Modelo predictivo del comportamiento de la cuenta total activo de los balances generales de los bancos comerciales de Honduras del periodo enero a septiembre 2023
Loading...
Date
2024-03-14
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Tecnológica Centroamericana UNITEC
Abstract
El objetivo final de nuestra investigación fue proponer un modelo de aprendizaje automático para predecir los resultados de la cuenta total activo de los balances generales de los bancos comerciales de Honduras para el periodo de enero a septiembre de 2023. Nuestro proyecto de investigación final mediante un modelo de aprendizaje automático de auto regresión estará en la capacidad de beneficiar a las autoridades financieras, bancos comerciales, inversionistas y clientes del sector bancario comercial de Honduras a: detectar anomalías, optimizar recursos, eficientar la toma de decisiones, mejorar la gestión financiera, identificar y evaluar riesgos financieros futuros. El proceso metodológico implementado para el cumplimento de nuestro objetivo de investigación fue el modelo CRISP-DM (Cross-industry standard process for data mining), el objetivo de aplicar CRISP–DM es para desarrollar un modelo de machine learning aplicando las seis fases de: compresión del negocio, compresión de los datos, preparación de los datos, modelado, evaluación y despliegue. El aplicar un modelo de machine learning permitió reforzar el análisis que se obtiene con las observaciones de las series de tiempo, a su vez logra obtener resultados a futuros de una forma matemática valida, estos resultados ayudan al nete regulador de los bancos, clientes, inversiones y los mismos bancos replantear sus estrategias y tomar mejores decisiones.
Description
Keywords
Aprendizaje automático, Cuenta activo, Bancos Comerciales