

FACULTAD DE POSTGRADO

TESIS DE POSTGRADO

COMPORTAMIENTO DE LOSA COMO DIAFRAGMA RÍGIDO

SUSTENTADO POR: RENÉ ANDRÉS GIRÓN VARGAS

PREVIA INVESTIDURA AL TÍTULO DE MÁSTER EN INGENIERÍA ESTRUCTURAL

TEGUCIGALPA, F. M., HONDURAS, C.A. 19 DE ABRIL DEL 2013

UNIVERSIDAD TECNOLÓGICA CENTROAMERICANA UNITEC

FACULTAD DE POSTGRADO

AUTORIDADES UNIVERSITARIAS

RECTOR LUIS ORLANDO ZELAYA MEDRANO

SECRETARIO GENERAL JOSÉ LÉSTER LÓPEZ

VICERRECTOR ACADÉMICO
MARLON ANTONIO BREVÉ REYES

DECANO DE LA FACULTAD DE POSTGRADO

JEFFREY LANSDALE

COMPORTAMIENTO DE LOSA COMO DIAFRAGMA RÍGIDO

TRABAJO PRESENTADO EN CUMPLIMIENTO DE LOS REQUISITOS EXIGIDOS PARA OPTAR AL TÍTULO DE MÁSTER EN INGENIERIA ESTRUCTURAL

ASESOR METODOLÓGICO
JESSY AYESTAS HERNÁNDEZ

ASESOR TEMÁTICO

JOAQUÍN EDGARDO TORRE MONCADA

MIEMBROS DE LA COMISIÓN EVALUADORA:

JAVIER SALGADO

MANUELA FLORES

FACULTAD DE POSTGRADO

COMPORTAMIENTO DE LOSA COMO DIAFRAGMA RÍGIDO

AUTOR:

René André Girón Vargas

RESUMEN:

El presente documento de investigación tuvo como propósito proporcionar una relación gráfica que exprese el comportamiento de losas de entrepiso actuando como diafragma rígido, para ello se hizo uso del método matemático de elementos finitos mediante el uso del programa electrónico para ordenador llamado STAAD.PRO con el cual se estudiaron diversos tipos de edificio alterando intencionalmente la cantidad de entrepisos, la relación geométrica en planta de las losas y el espesor de ellas. Con lo anterior y mediante la aplicación de una carga sísmica tipo, se obtuvo como resultado las deformaciones y desplazamientos críticos de los modelos del edificio con lo que se evaluó la rigidez del diafragma según lo solicitado por las normas técnicas de análisis y diseño estructural. Se pudo comprobar que para edificios altos con las características mostradas en este documento, las losas se comportan como diafragma rígido. Caso contrario ocurre en los edificios de baja altura en los cuales, por su relativa alta rigidez, absorben la mayoría de la solicitación sísmica provocando así deformaciones suficientes en el plano principal de las losas, asemejando de esta manera un comportamiento flexible de la misma.

Palabras claves: diafragmas horizontales, diafragmas de piso, rigidez en el diafragma, distribución de cargas laterales, distribución horizontal de cortante.

GRADUATE SCHOOL

SLAB BEHAIVOR LIKE RIGID DIAPRAGM

AUTHOR:

René Andrés Girón Vargas

ABSTRACT:

This research is intended to provide a graphical relation expressing the behavior of floor slabs acting as rigid diaphragm, for this purpose the mathematical method of finite elements using the computer program called STAAD.PRO which were studied with various types of building intentionally altering the amount of floors, the geometric relationship of the floor slab and the thickness between them. With all of the above and by applying seismic loading type, it resulted deformations and critical displacements of the building models which evaluated the stiffness of the diaphragm as requested by the technical rules of structural analysis and design. It was found that for high building with the features shown in this document, slabs behave as rigid diaphragm. Otherwise occurs in low-rise building in which, by its relatively high stiffness, it absorb most of the seismic action, causing sufficient strain in the main plane of the slabs, resembling a flexible behavior in it.

Keywords: horizontal diaphragms, flat diaphragms, diaphragm stiffness, lateral load distribution, shear horizontal distribution.

ÍNDICE

,		,
	I DI ANTEAMIENTA D	E LA INVESTIGACIÓN
CAPITULO	I. PI ANIFAWIENIO I	IC I A INVESTIGACION

	1.1	INTRODUCCIÓN	. 8
	1.2	ANTECEDENTES	10
	1.3	DEFINICIÓN DEL PROBLEMA	16
	1.4	OBJETIVOS DEL PROYECTO	17
	1.5	HIPÓTESIS Y VARIABLES DE ESTUDIO	18
	1.6	JUSTIFICACIÓN	18
C	APÍT	ULO II. MARCO TEÓRICO	
	2.1 C	ONCEPTUALIZACIÓN DE DIAFRAGMA RÍGIDO	19
	2.2 R	UTA DE TRANSMISIÓN DE CARGAS	20
	2.3 D	ISEÑO DE DIAFRAGMAS	21
	2.4 P	ARÁMETROS LÍMITES DE LAS NORMAS TÉCNICAS	23
	2.5 D	ISEÑO DE LOSA ASUMIDA COMO DIAFRAGMA RÍGIDO	25
	2.6 N	MODELACIÓN MATEMÁTICA PARA INCORPORAR LA FLEXIBILIDAD D	EL
	DIAF	RAGMA	28
C	APÍT	ULO III. METODOLOGÍA	
	3.1 P	ROCEDIMIENTO DE LA INVESTIGACIÓN	34
	3.2 C	ARACTERÍSTICAS DE LA MODELACIÓN DE LOS EDIFICIOS	35
	3.3 H	ERRAMIENTAS PARA LA OBTENCIÓN DE RESULTADOS	36
C	APÍT	ULO IV. RESULTADOS Y ANÁLISIS	
	4.1 E	DIFICIO DE UN NIVEL DE ENTREPISO	37
	4.2 E	DIFICIO DE TRES NIVELES DE ENTREPISO	46
	4.3 E	DIFICIO DE CINCO NIVELES DE ENTREPISO	54

4.4 EDIFICIO DE SEIS NIVELES DE ENTREPISO	64
4.5 EDIFICIO DE NUEVE NIVELES DE ENTREPISO	68
CAPÍTULO V. CONCLUSIONES	
5.1 CONCLUSIONES	73
BIBLIOGRAFÍA	75
ÍNDICE DE TABLAS	69
ÍNDICE DE FIGURAS	75

CAPÍTULO I. PLANTEAMIENTO DE LA INVESTIGACIÓN

1.1 INTRODUCCIÓN

Cuando se habla de zonas vulnerables a eventos sísmicos normalmente los diseñadores estructurales enfocan sus análisis en evaluar la capacidad resistente de los elementos verticales como lo son las columnas y muros de cortante, así como las vigas que ligan estas columnas para desarrollar un sistema rígido adecuado capaz soportar las solicitaciones horizontales a las que estará expuesta.

Para determinar la magnitud y distribución de la carga sísmica equivalente, distintas propuestas y metodologías matemáticas se han desarrollado con la finalidad de obtener aproximaciones suficientemente cercanas a las características de una excitación dinámica producto de aceleraciones en el suelo a consecuencia de eventos sísmicos. Estas metodologías actualmente se encuentran comúnmente especificadas dentro de las diferentes normativas técnicas para el análisis y diseño estructural de edificios.

Sin embargo los procedimientos de análisis para determinar las fuerzas sísmicas como lo son el análisis estático y el análisis dinámico, parten de la premisa de asumir que las losas de entrepisos actúan como diafragmas con la suficiente rigidez en su plano principal para absorber y transmitir las solicitaciones inducidas por movimientos sísmicos.

Esta plataforma que sirve como base para establecer cada una de las metodologías referenciadas, es de suma importancia debido a que estos elementos estructurales se encargan de distribuir la carga a los elementos verticales en forma proporcional a la rigidez de estos.

Debido a que cada proyecto presenta particularidades de forma en su geometría, al mismo tiempo que pueden ser concebidos por diferentes tipos de materiales, resulta

realmente intrigante conocer si cada uno de ellos efectivamente cumple con la premisa de diafragma rígido.

La gama de posibilidades de forma de un edificio puede ampliarse de manera infinita, empezando por la variabilidad de dimensiones en planta como en su alzado, así como las diferentes características individuales que puedan tener cada uno de los miembros estructurales que en conjunto, conforman un edificio.

El tema central de esta investigación es precisamente estudiar diferentes casos para comprender el comportamiento real de las losas actuando como diafragmas. Sólo de esta manera se puede comprender el efecto que ocasiona la rigidez aportante de la losa en el sentido de la solicitación sísmica.

En el capítulo I se plantea los antecedentes que ilustran los efectos de una relativa baja rigidez en las losas de entrepiso que provocan patologías en la estructura. También en este capítulo se define claramente el problema de no contar con diafragmas horizontales rígidos al mismo tiempo que se declaran los objetivos del proyecto y las hipótesis con sus respectivas variables de estudio.

El capítulo II expone el marco teórico utilizado para desarrollar la metodología del trabajo de la investigación la cual se expone abiertamente en el capítulo III de este documento.

Finalmente en el capítulo IV se derivan en las conclusiones de la investigación que resultan claves para profesionales dedicados al análisis y diseño estructural de Edificios, así como para aquellos que para fines investigativos puedan optar a esta información como base para probables futuras investigaciones del tema.

1.2 ANTECEDENTES

En la tesis: "Diafragma de piso: Flexibilidad en el plano" del Ing. Luis Guillén se

documentan casos que resaltan el problema de la flexibilidad en el plano de las losas, a

continuación se describen dichos casos.

CASO I: Arvin High School Building.

Steinbrugge y Morán (1954) reportaron el siguiente caso ocurrido en el sureste de

california:

El edificio fue solicitado por el terremoto Kent County de magnitud de 7.7 el 21 de Julio

de 1954. El edificio estaba constituido por una geometría de 197 pies de largo por 46

pies de ancho. En la dirección transversal la resistencia ante cargas laterales la

proporcionaban dos muros de cortante ubicados en los extremos del edificio (Fig. 1 y

Fig. 2).

El muro de cortante del segundo nivel, ubicado en la parte Este del edificio fue

afectado, Steinbrugge (1970) relató: "El daño en este muro de cortante consiste en

grietas a tensiones diagonales, además de la separación con las esquinas del edificio

debido a las deflexiones del diafragma de piso provocando esfuerzos torsionales en la

pared dañada".

NORTH ELEVATION

Figura 1: Elevación del edificio Arvin High School.

Fuente: Tesis de post grado Ingeniería Estructural de Ing. Luis Guillén.

10

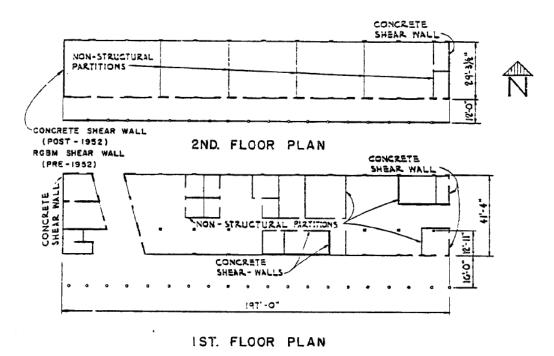


Figura 2: Vistas de plantas del Edificio Arvin High Shool.

Fuente: Tesis de post grado Ingeniería Estructural de Ing. Luis Guillén.

CASO II: West Anchorage High School.

Meehan (1967) reportó el siguiente caso ocurrido en Alaska:

El Edificio sufrió daños producto a un terremoto con magnitud de 8.4, el 27 de Marzo de 1964. El Edificio fue construido en 1952-53 con un sistema de "flat plate" para la losa de piso.

En la Fig. 3 se puede observar las plantas del edificio en las cuales se distinguen que fueron concebidos arquitectónicamente por dos alas unidas en un ángulo.

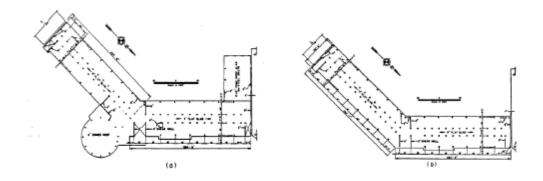


Figura 3: Vistas de plantas del Edificio West Anchorage High School. Fuente: Tesis de post grado Ingeniería Estructural de Ing. Luis Guillén.

La causa y la secuencia de los daños en el edificio han sido descritas por Meehan (1967): "No se puede estar seguro de la secuencia ni de la ruta de los daños, sin embargo, se cree que los daños iniciales surgieron en el diafragma de techo en el vértice del ángulo formado por las dos alas del edificio, debido a esfuerzos torsionales generados en este diafragma. Además se cree que después que el diafragma de techo se separó en este punto cada ala del edificio forma una estructura individual, por tanto se dio una redistribución de las fuerzas en las paredes de cortante. Las paredes no fueron capaces de soportar esta redistribución y aparentemente sufrieron daños después".

Figura 4: Vistas panorámica Edificio West Anchorage High School.

Fuente: Imagen disponible en www.speakeasy.jazzcorner.com

Figura 5: Daños ocasionados en Edificio West Anchorage High School.

Fuente: imagen disponible en www.world-housing.net

Figura 6: Daños en columnas del edificio West Anchorage High School.

Fuente: imagen disponible en www.world-housing.net

Las plantas irregulares en forma de T, L, H, Z, U han demostrado tener mal comportamiento sísmico por el hecho de que cada zona está sujeta a fuerzas de inercia que podrían actuar simultáneamente es sentidos indeseables (ver Fig. 7), por tal razón se recomienda desdoblar este tipo de bloques simples mediante juntas verticales (ver Fig. 8).

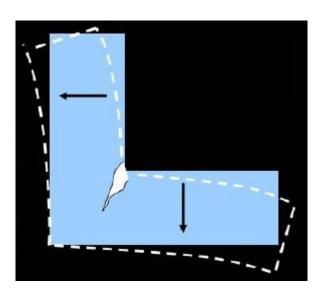


Figura 7: Dirección de esfuerzos en plantas irregular tipo L.

Fuente: comentarios a norma ES070. Albañilería (2005). Ángel San Bartolomé.

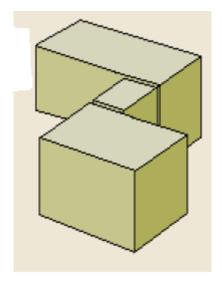


Figura 8: Juntas verticales recomendado en edificio de forma tipo Z. Fuente: comentarios a norma ES070. Albañilería (2005). Ángel San Bartolomé.

CASO III: Northdrige Meadows Apartment Complex.

Shierle Goetz and Vergun Dimitry (1994) reportaron este caso ocurrido durante un terremoto en la ciudad de California:

Esta es una estructura que mostró una excesiva flexibilidad en el diafragma de piso, debido a que el entrepiso era de madera, por tanto las paredes dispuestas para tomar las cargas laterales estuvieron bajo cargas el doble de las esperadas al asumir el entrepiso rígido.

Figura 9: Vista general del complejo de apartamentos Northdrige Meadows.

Fuente: imagen disponible en www.scec.org

En este caso los daños ocasionados en el complejo habitacional de Northdrige Meadows resultaron devastadores tal como se logra apreciar en la Fig. 10.

Debido a que la madera actuando como diafragma resulta un elemento con baja rigidez para absorber y transmitir las fuerzas horizontales que se generan por efectos de inercia entre los elementos verticales resistentes, la distribución de estas fuerza se produjo en función del área tributaria de cada pared resistente a carga lateral y no en forma proporcional a la rigidez lateral de estos elementos.

Figura 10: Daños ocasionados en el complejo de apartamentos Northdrige Meadows.

Fuente: imagen disponible en www.teacher.scholastic.com

1.3 DEFINICIÓN DEL PROBLEMA

Así como se mostró en los casos de antecedentes históricos del acápite anterior, diferentes problemas surgen a raíz de una mala concepción de la rigidez aportante de los diafragmas de piso.

En los métodos de análisis sísmicos comúnmente adoptados, se da por sentado que los sistemas de piso y techo constituyen diafragmas horizontales infinitamente rígidos y capaces de realizar dicha distribución de fuerzas sin deformarse.

La hipótesis de manejar sistemas de piso que actúan como diafragmas infinitamente rígidos permite al proyectista estructural simplificar de manera considerable el proceso de análisis y de diseño sísmico de edificaciones.

Entre los problemas que ocasiona el no considerar las losas como diafragmas rígidos se pueden enumerar los siguientes:

- a. Las fuerzas de inercia y las cortantes de entrepiso no se distribuyen entre los distintos elementos resistentes, en forma proporcional a la rigidez de éstos. En general, cada sistema vertical resistente recibe las fuerzas que se generan en su área tributaria
- b. En sistemas a base de muros de carga las fuerzas de inercia pueden producir empujes sobre los elementos perpendiculares a la dirección de las fuerzas sísmicas. Éstos quedan sujetos a fuerzas normales a su plano, para las cuales tienen escasa resistencia.
- c. La ausencia de un diafragma de piso rígido puede ocasionar la distorsión de la estructura en planta e invalidar la hipótesis de que las fuerzas sísmicas actuantes en cualquier dirección pueden descomponerse en fuerzas aplicadas sobre los sistemas ortogonales resistentes de la estructura.
- d. En general, el no considerar las losas de entrepiso actuando como diafragmas rígidos inhabilita la posibilidad de utilizar las metodologías estipuladas en las normas técnicas nacionales referente a los procedimientos para determinar las fuerzas sísmicas y su posterior distribución a los elementos estructurales.

1.4 OBJETIVOS DEL PROYECTO

El objetivo primordial que se busca en el estudio de esta investigación es desarrollar una expresión o relación matemática gráfica que permita al lector determinar si una losa se comporta como diafragma rígido en el momento que es solicitada por cargas externas que se desarrollan a lo largo del plano del elemento estructural en mención.

Consecuente con lo anterior se visualiza como objetivo secundario para alcanzar el primordial, determinar las variables que afectan la rigidez del diafragma para que este

sea capaz de trasladar eficientemente las solicitaciones producto de cargas laterales sin que se presente daño en la losa.

1.5 HIPÓTESIS Y VARIABLES DE ESTUDIO

En relación a los objetivos planteados en el acápite anterior, el presente documento parte de la necesidad de validar o rechazar las siguientes hipótesis:

- 1. Los factores más incidentes mediante los cuales se puede determinar una relación que establezca el efecto de diafragma en una losa son: la geometría de la planta de la losa, el espesor de la losa y la relación entre la deformación en el plano del piso con los desplazamientos relativos del mismo piso.
- 2. La relación entre la fuerza lateral aplicada al centro de rigidez y el espesor de la losa que satisface el efecto de diafragma de piso son directamente proporcionales, es decir, se comportan de manera aproximadamente lineal.
- 3. Cuando el sistema de piso no constituye diafragma rígido, las fuerzas de inercia y las cortantes de entrepiso no se distribuyen entre los distintos elementos resistentes, en forma proporcional a la rigidez de éstos, sino más bien, se distribuyen en función de las áreas tributarias que los circundan.

Las variables de estudio de esta investigación son la altura del edificio, la relación de los lados de las losas de entrepiso vistas en planta y los espesores de la losa.

1.6 JUSTIFICACIÓN

Con la intención de demostrar que la aplicabilidad de diafragmas rígidos en los análisis estructurales dependen de un estudio previo a su utilización, se desarrolla esta investigación para que el lector tenga un parámetro más claro de cuando utilizar esta hipótesis en su diseño y cuando debe realizar estudios más avanzadas para demostrar que el análisis sísmico que utiliza es correcto y adecuado a las condiciones físicas reales de los elementos estructurales que diseña y finalmente que se construyen.

CAPÍTULO II. MARCO TEÓRICO

2.1 CONCEPTUALIZACIÓN DE DIAFRAGMA RÍGIDO

En la actualidad el concepto de diafragma es comúnmente utilizado en el análisis de estructuras sometidas a cargas laterales aplicadas, tales como las acciones de viento o sismo. La norma técnica del Código Hondureño de la Construcción (CHOC-08) define el término diafragma como un sistema horizontal, o casi horizontal, que actúa para transmitir fuerzas laterales a los elementos verticales resistentes a fuerzas laterales. Además, incluye en esta definición a los sistemas horizontales arriostrados.

De la misma manera, La Norma Colombiana de Diseño y Construcción Sismo Resistente (NSR-97) menciona que un diafragma puede definirse como un conjunto estructural horizontal o ligeramente alejado de la horizontal, de espesor pequeño respecto de sus otras dos dimensiones, que tiene la capacidad de trabajar bajo fuerzas contenidas en su propio plano.

El Reglamento Nacional de Edificaciones del Perú en el acápite E-070, especifica el concepto de diafragma rígido como una lámina que no se deforma axialmente ni se flexiona ante cargas contenidas en su plano.

El Instituto de Ingeniería de la UNAM considera que el sistema de piso de una edificación debe ser capaz de transmitir las fuerzas sísmicas actuantes en el piso a los elementos o sistemas sismo resistente, comúnmente marcos o muros estructurales. Cuando se logra este objetivo, concluyen que existe la "acción de diafragma" o de "diafragma rígido". Es así que la hipótesis de diafragma rígido es esencial en el análisis y diseño sísmico de edificios y su empleo permite simplificar de manera considerable el proceso del análisis y diseño sísmico de edificaciones.

2.2 RUTA DE TRANSMISIÓN DE CARGAS

El Reglamento de Construcción del Distrito Federal de México (RCDF-96), especifica de manera general la necesidad de revisar que el sistema de piso a utilizar sea capaz de resistir las acciones de diseño para lograr el comportamiento de diafragma. Un procedimiento simple que puede usarse para determinar esta revisión es la teoría del puntal tirante. Con este método es posible tener den manera rápida una idea general del flujo de fuerzas en el diafragma.

La figura 11 muestra de manera gráfica la aplicación de esta teoría, la que permite detectar fuerzas en compresión y tensión.

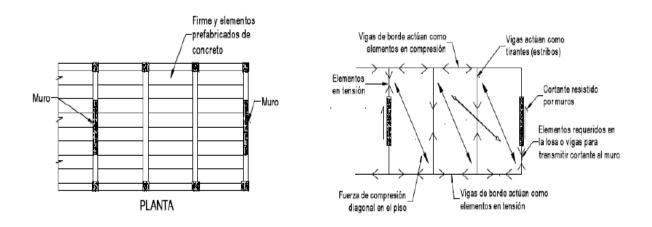


Figura 11: Modelo de puntal y tirante para el análisis de fuerza de un diafragma

Fuente: Tesis de post grado Ingeniería Estructural de Ing. Luis Guillén.

Según este método, las fuerzas en compresión deben ser resistidas por el concreto del diafragma, sobre todo en las esquinas, donde concurren las fuerzas de tensión análogas a las existentes en los estribos de las vigas.

De la misma manera, en la figura anterior se pueden apreciar fuerzas adicionales en tensión actuantes en las zonas losas o trabes que conectan a los muros estructurales. En general este procedimiento de análisis es especialmente útil en geometrías

irregulares de diafragma, así como en los casos de aberturas importantes en el sistema de piso.

2.3 DISEÑO DE DIAFRAGMAS

La sociedad "Burr & Cole Consulting Engineers" explican en una metodología concisa el proceso para el diseño de una losa actuando como diafragma rígido.

Ellos hacen la siguiente clasificación usual de diafragmas:

Tabla 1: Clasificación del tipo de diafragmas.

	Flexible	Rígido	
	Pieza de hormigón prefabricado sin topping	Pieza de hormigón prefabricado con topping	
A Tipo	Lámina de acero	Losa de hormigón sobre lámina de acero	
	Plywood	Hormigón fundido en sitio	
B Distribución de fuerzas	B Distribución de fuerzas Áreas tributarias		

En el proceso de diseño de diafragmas es oportuno observar las provisiones límites que dictan los códigos de normas técnicas para cada país o región en particular. Entre otros, estas restricciones son las referidas a la relación entre el espesor y la luz de la losa, limitaciones en la transferencia de torsión en diafragmas flexibles de los edificios de composición abierta y donde las paredes de mampostería u hormigón no pueden soportar los grandes movimientos.

De la misma manera se debe tener cuidado en rincones, esquinas reentrantes, aberturas, colectores, conexiones a paredes, contravientos y marcos. También se debe

prestar especial atención a los empalmes entre diafragmas de una estructura existente y una nueva.

La deformación lateral máxima del diafragma que ellos consideran no debe ser mayor que dos veces la deriva del piso calculada como muestra la Fig. 12. La distribución del cortante lo basa en los cálculos del cortante directo y en el cortante torsional.

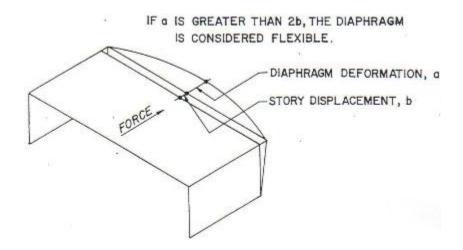


Figura 12: Relación entre la deformación del diafragma y el desplazamiento relativo entre pisos.

Fuente: Diaphragm Design, Bruce Burr P.E., Gargi Talati P.E.

Guillén (2009), considera cuatro pasos básicos para incorporar un diafragma de lámina de acero en un Edificio:

Paso 1. Diseñar la lámina para soportar las cargas verticales impuestas. Esto va a determinar el perfil de la lámina y su espesor.

Paso 2. Determinar las fuerzas cortantes que serán resistidas a través de la acción del diafragma.

Paso 3. Detallar la conexión de la lámina al soporte de acero y a las conexiones de las longitudes de los lados para desarrollar la resistencia cortante requerida.

Paso 4. Si las fuerzas cortantes no pueden ser transportadas igualmente con el número máximo de pasadores, resultará necesario para cualquiera de los dos incrementar el espesor de la lámina o reducir la distancia entre el espacio estructural del soporte.

Este método de diseño asume que el perfil de la lámina de acero tiene un firme de concreto sobre impuesto con una fuerza en compresión mínima f´c de 180 Kg/cm² y un peso mínimo de 1,500 Kg/m³, acero mínimo de temperatura 6 x 6 / #10. Además, también requiere de alambre soldado.

La flexibilidad de un diafragma metálico con superficie de concreto usualmente cae dentro de la categoría rígida, la clasificación de los diafragmas se pueden ver en la siguiente tabla:

Tabla 2: Límites del diafragma basados en las consideraciones de flexibilidad.

			Máximas relaciones de diafragmas de distancia profunda			
Categoría de	flevibilidad	Máxima distancia*** ft	Sin torsión en la estructura		Torsión en la estructura	
la flexibilidad del diafragma			Paredes de concreto o mampostería	Paredes flexibles	Paredes de concreto o mampostería	Paredes Flexible*
Flexible	70 - 150	100	2.0**	3.0	No usada	2.0
Semi flexible	10 - 70	200	2.5**	4.0	No usada	2.5
Semi rígido	1 - 10	300	3.0**	5.0	2.0	3.0
Rígido	-1	400	**	sin límite	**	3.5

^{*} Para diafragmas en voladizo, reduce las máximas relaciones de diafragma de distancia profunda a un valor a la mitad

2.4 PARÁMETROS LÍMITES DE LAS NORMAS TÉCNICAS

El código Hondureño de la Construcción (CHOC-08) establece en su normativa algunos parámetros que deben observarse para garantizar el efecto de diafragma en losas.

Según la norma mencionada, la deflexión en el plano del diafragma no deberá exceder la deflexión permisible de los elementos sujetados. La deflexión permisible deberá ser

^{**} Valor como ha sido mostrado o requerido para la deflexión

^{***} Máxima distancia de los soportes laterales de las paredes de concreto o mampostería

la que permita al elemento sujetado mantener su integridad estructural bajo las cargas individuales y continuar soportando las cargas prescritas.

En referencia a las fuerzas, el CHOC-08 establece que los diafragmas de piso y techo deberán resistirlas de acuerdo con la siguiente expresión:

$$F_{px} = \frac{F_{t} + \sum_{i=x}^{n} F_{i}}{\sum_{i=x}^{n} w_{i}} \text{ w}_{px}; \text{ Donde } F_{px} \text{ no necesita exceder 0.75 Z I W}_{px}, \text{ pero no deberá ser}$$

menor que 0.35 Z I W_{px.}

Cuando se requiera que el diafragma transmita fuerzas laterales de los elementos verticales resistentes arriba del diafragma a otros elementos verticales resistentes abajo del diafragma debido a desalineamientos en la colocación de los elementos verticales o a cambios en su rigidez, estas fuerzas deberán sumarse a las determinadas por la ecuación anterior.

El reglamento Uniform Building Code (UBC) de 1991, para Estados Unidos, sugiere un criterio que se puede categorizar como simplista para definir la frontera entre diafragma rígido y flexible, este último lo define como aquel donde, "la deformación lateral máxima del diafragma es mayor de dos veces el desplazamiento relativo de entrepiso del piso correspondiente". Este estado de deformaciones se ilustra en la figura 13:

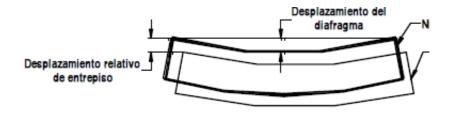


Figura 13: Deformaciones en un diafragma de piso rígido.

Fuente: Tesis de post grado Ingeniería Estructural de Ing. Luis Guillén.

De acuerdo con el reglamento RCDF-96, para el caso de un sistema de piso prefabricado se puede lograr con un firme colado sobre los elementos prefabricados "a condición que se dimensione de modo que por sí solo resista las acciones de diseño que actúan en su plano". Además, el RCDF-96 especifica que "el espesor del firme no será menor que 6.0 cm, si el claro mayor de los tablero es de 6.0 m o más. En ningún caso será menor que 3.0 cm".

Además, a diferencia de la práctica constructiva en los Estados Unidos, el RCDF-96 sugiere la colocación de "conectores que impidan que el firme se separe de los elementos prefabricados"

En Nueva Zelandia se considera que un firme colado en sitio, de al menos 5 cm es suficiente para transmitir las fuerzas en el plano del diafragma en sistemas de piso prefabricados. En algunos países, como en Japón, es permitido el empleo de sistemas de piso prefabricados sin el mencionado firme colado en sitio.

2.5 DISEÑO DE LOSA ASUMIDA COMO DIAFRAGMA RÍGIDO

El Ing. Luis Guillén efectúa una metodología práctica para el diseño de una losa de concreto como diafragma de piso.

Primero se determina las cargas muertas y las fuerzas cortantes de sismo. Considera que el peso de las paredes paralelo a las fuerzas sísmicas aplicadas no contribuye a la fuerza cortante de diafragma por ello no las incluye.

Luego se calcula las fuerzas de cortante básicas mediante la expresión: $V_{x,y}$ =ZIKCSW

Posteriormente, calcula el centro de masa mediante la siguiente relación:

$$X_{m} = \frac{\sum xW}{\sum W}$$

$$Y_{m} = \frac{\sum xW}{\sum W}$$

Luego, calcula el centro de rigidez. Para una pared en voladizo, la deformación está dada por la expresión:

$$\Delta = \frac{Ph^3}{3EI} + \frac{1.2Ph}{AG}$$

Dónde:

P=Fuerza externa aplicada

E=Módulo de Elasticidad del material

I=Inercia

h=altura

A=área

G=Módulo de corte

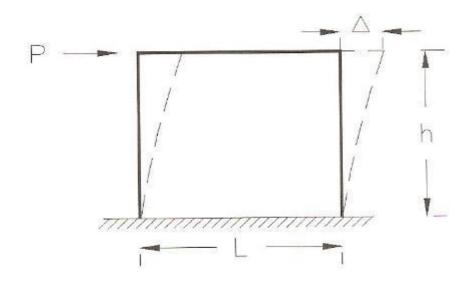


Figura 14: Deformación para una pared en voladizo.

Fuente: Tesis de post grado Ingeniería Estructural de Ing. Luis Guillén.

La excentricidad torsional es calculada en ambos sentidos como la diferencia entre las coordenadas del centro de masa y el centro de rigidez. Luego se multiplica por la

excentricidad torsional accidental que según el código UBC-97 se debe considerar un mínimo de 5%.

Obtenido los valores de cortante y de excentricidad para cada dirección se obtienen los momentos torsores a los que estará sujeta la losa:

$$T_x = V_x e_v$$
 $T_v = V_v e_x$

Las fuerzas en el plano de las paredes para la fuerza cortante las calcula así:

$$F_{vx} = Vx \frac{Rx}{\sum Rx}$$
 $F_{vy} = Vy \frac{Ry}{\sum Ry}$

Mientras que la fuerza en el plano de la pared para la torsión la calcula así:

$$F_{TX} = Tx \frac{Rd}{\sum Rd^2}$$
 $F_{TY} = Ty \frac{Rd}{\sum Rd^2}$

Donde *d* es la distancia de cada pared desde el centro de rigidez. En este punto, el autor no considera la reducción de las fuerzas cortantes de la pared en los casos en que la torsión contribuye de manera positiva.

Usando los datos computados de las fuerzas de la pared y de la dirección del torque, calcula la distribución de la fuerza aplicada en el diafragma.

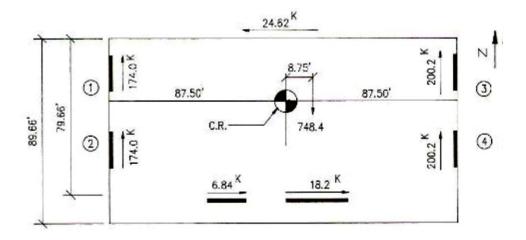


Figura 15: Ejemplo de cargas de diseño en las paredes de un Edificio.

Fuente: Tesis de post grado Ingeniería Estructural de Ing. Luis Guillén.

Con las fuerzas obtenidas fácilmente calcula el valor del momento solicitante. Consecuentemente es posible revisar la fuerza cortante de la losa a lo largo de las paredes, obtener la capacidad resistente de la losa y el diseño de la cuerda.

Dentro de sus conclusiones, el autor hace la observación que aunque en la mayoría de los libros de texto mencionan que las losas monolíticas con espesores de concreto considerables se pueden perfectamente considerar como rígidos, se debe hacer un estudio más profundo para validar esta hipótesis.

2.6 MODELACIÓN MATEMÁTICA PARA INCORPORAR LA FLEXIBILIDAD DEL DIAFRAGMA

Miguel Rodriguez T. y Oscar A. Lopez (2002) basándose en la teoría de vigas y mediante estudios paramétricos se han desarrollado expresiones analíticas para determinar el espesor de una losa maciza equivalente de concreto cuya flexibilidad en el plano es similar a la de una losa de sección transversal variable de dos materiales. Para una losa compuesta convencional de 10 cm de altura, el espesor equivalente varía generalmente entre 8.3 y 8.5cm.

Esta aproximación permite adoptar un modelo simplificado de elementos finitos planos de espesor constante para modelar la flexibilidad de la losa compuesta en el análisis sísmico de edificios.

Las losas compuestas tienen distintos comportamientos, para determinar la flexibilidad han simplificado la geometría de la sección transversal y se ha elaborado el modelo constituidos con elementos finitos tal y como se muestra en la figura 16

Los autores realizan una evaluación particularmente para la dirección de flexión perpendicular a los canales, es decir cuando las cargas actúan en la dirección perpendicular a ellos. La deflexión "Y" en el centro del tramo a través de la teoría de la viga está dada por la siguiente expresión:

$$Y = \frac{5qb^4}{384 \, Elyy} + \frac{fs_1qb^2}{8AG}$$

Siendo:

q = carga uniformemente distribuida en el plano de la losa (Kg/cm)

b = Luz libre entre apoyos o dimensión del paño en la dirección de los canales (cm)

 I_{yy} = Momento de Inercia de la sección transversal transformada, perpendicular a los nervios, alrededor del Eje de flexión (cm 4)

A = Área total de la sección transversal transformada perpendicular a los nervios (cm²)

E = Módulo de elasticidad del concreto = 2,1 x 10⁵ Kg/cm²

G = Módulo de corte del concreto = 8,08 x 10⁴ Kg/cm²

 fs_1 = Factor de forma » A/A_{corte} » 1,30 para losas compuestas de altura total igual a 8 cm, ancho de nervios igual a 5,4 cm, separados a 19,1 cm y loseta de 4,2 cm de espesor

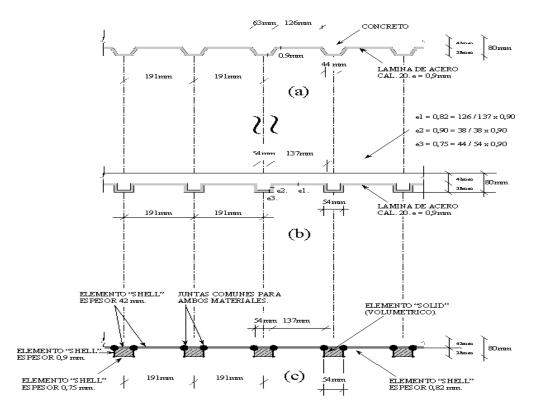


Figura 16: Losa compuesta: a) Sección transversal; b) Sección transversal simplificada; c) Modelo constituido por elementos finitos tipo "shell" (plano) y tipo "solid" (volumétrico)

Fuente: Boletín Técnico, Miguel Rodríguez T. y Oscar A. López

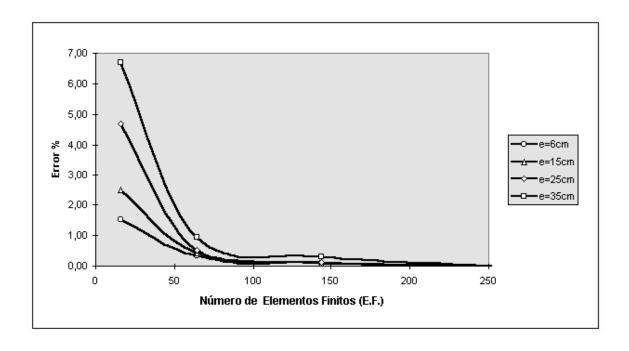


Figura 17. Error relativo en el desplazamiento de piso en función del número de elementos finitos planos y del espesor "e" de la losa.

Fuente: Boletín Técnico, Miguel Rodríguez T. y Oscar A. López

Para desarrollar su propuesta ellos consideraron utilizar una malla de 580 elementos planos y 100 elementos sólidos; luego de la evaluación de 24 edificios de un piso definidos por diferentes espesores de losa, en cada caso se varió el número de elementos finitos usados para discretizar la losa. Para el caso en que se incorporan 16 elementos finitos en el modelo de la losa se observa un error máximo de 6,68 % (figura 17) entre los edificios analizados. De lo anterior se recomienda para efectos prácticos usar un número mayor o igual a 16 elementos finitos en el análisis de edificios de planta rectangular.

Para cada valor de la relación lado largo (b) entre el lado corto (a) de la losa, se determinó la deflexión en el centro del tramo de esta al someterla a una carga uniforme.

El estudio tanto del modelo de viga como el de elementos finitos les permite concluir que la teoría de viga, incorporando deformaciones por flexión y corte, es apropiado para modelar la acción de diafragma en losas compuestas. Como podemos ver en la tabla 3 y en la figura 18.

Tabla 3: Relación ancho largo de losa.

Valores de b/a	b/a = 1	b/a = 1.5	b/a = 2	b/a = 3
Teoría de viga	1.49	4.28	10.09	38.98
Elementos finitos	1.42	4.24	10.16	39.78

Figura 18. Paños de losas compuestas con diferente relación largo/ancho: a) b/a = 1,00; b) b/a = 1,50; c) b/a = 2,00; d) b/a = 3,00

Fuente: Boletín Técnico, Miguel Rodríguez T. y Oscar A. López

El procedimiento para determinar el espesor equivalente consiste en calcular la deflexión en el centro del tramo de un paño de losa simplemente apoyada utilizando la losa compuesta e igualarla al de la losa maciza equivalente. Para la determinación de las deflexiones, proponen usar el modelo de la teoría de viga descrita previamente y recomiendan separar la determinación del espesor equivalente en dos direcciones ortogonales principales: perpendicular a los nervios y en la dirección de los nervios.

Dentro de las conclusiones del modelo utilizado en su investigación, Miguel Rodríguez T. y Oscar A. López afirman: "El análisis dinámico de un edificio de acero de 4 pisos,

constituido con losas compuestas de dimensiones típicas, revela la presencia de errores significativos al utilizar la hipótesis clásica de diafragma infinitamente rígido. Se desprende por tanto la conveniencia de incorporar la flexibilidad del diafragma en el diseño sismorresistente de edificios similares. Se recomienda también desarrollar estudios futuros que identifiquen los tipos de edificios donde estos efectos son importantes y sea necesaria su inclusión en el diseño sismo-resistente".

CAPÍTULO III. METODOLOGÍA

3.1 PROCEDIMIENTO DE LA INVESTIGACIÓN

Para validar o rechazar las hipótesis que se asumen preliminarmente para alcanzar los objetivos planteados en este documento, se ha diseñado una metodología de trabajo que explica de manera sistemática el proceso que se pretende seguir para alcanzar las metas planteadas.

El proceso se origina mediante la elección de un edificio modular que sirva como objeto de estudio en relación al tema de investigación.

Para el análisis de la losa de entrepiso, se recurrió al método de elementos finitos. Previo a la aceptación de las dimensiones de cada elemento finito, se efectuó una sensibilización de la losa tomando como parámetro la deflexión de la misma hasta obtener un resultado representativo de la máxima ganancia de información con resultados confiables.

Luego se procedió a realizar la modelación matemática de diferentes modelos de edificios que varían en altura y en su relación de dimensiones de su planta. Las alturas de los edificios investigados fueron de uno, tres, cinco, seis y nueve niveles de entrepiso. También, las dimensiones en planta del edificio consideradas fueron relaciones de cota larga entre cota corta de 1 a1, 1 a 1.5, 1 a 2, 1 a 2.5 y 1 a 3.

Para cada modelo matemático de estudio se introdujo, como elementos de rigidez, muros de cortante en los extremos del edificio para evaluar posteriormente los desplazamientos y deformaciones de las losas. Luego se obtuvo una recopilación de resultados investigando la relación de estas deformaciones y desplazamientos a fin de definir el comportamiento de diafragma rígido de las losas de entrepiso basados en lo establecido en el Código Hondureño de la Construcción CHOC-08, el cual establece que si esta relación es mayor que dos la losa de entrepiso se debe considerar como diafragma flexible.

Para cada caso particular de estudio se sensibilizó el espesor de la losa a fin de investigar que espesor de losa era adecuada para considerar el diafragma rígido de piso y de esta manera concluir en recomendaciones prácticas a través de gráficos que muestran claramente el comportamiento de cada modelo.

3.2 CARACTERÍSTICAS DE LA MODELACIÓN DE LOS EDIFICIOS

Para todos los modelos de los edificios se consideraron características similares para efectos comparativos. Estas características son las siguientes:

Las distancias de intercolumnios son de cinco metros en las dos direcciones ortogonales de la planta. Las secciones transversales de las columnas son de 25 cm x 25 cm, los muros de cortante tienen un espesor de 25 cm, las secciones transversales de las vigas son de 30 cm x 20 cm, la dimensión de cada placa finita que compone en su conjunto la losa de entrepiso es de 50 cm x 50 cm y su espesor se varió intencionalmente para cada modelo con la finalidad de obtener diferentes valores de desplazamientos y deformaciones que permitieran investigar el comportamiento diafragmático flexible y rígido de las losas de entrepiso.

En los modelos matemáticos se analizó únicamente el escenario de carga sísmico que provoca mayor incidencia en la deformación de la losa, esto es, con la dirección de la carga paralela al lado corto de la planta del diafragma de piso. Debido a que el análisis de esta investigación parte de obtener desplazamientos, el escenario de carga utilizado, no presenta ningún factor de mayoración que lo modifique, es así que se utilizó la carga sísmica en servicio.

Para este estudio se procuró utilizar los valores de factor de zona sísmico que provocan mayor incidencia en los modelos de edificios considerados según el Mapa de Zonas Sísmicas del CHOC-08. Además, debido a que, la construcción de los edificios en el país tienen en su mayoría un enfoque comercial se categorizó la ocupación de los edificios como "estructuras ordinarias" según la tabla de Categorías de ocupación y factores de importancia estipuladas por la norma CHOC-08.

Los parámetros del análisis para la obtención de la carga sísmico según lo especificado

en el párrafo anterior son los siguientes:

Valor de zona: 0.35

Factor de importancia: 1

Factor numérico de ductilidad: 8

Se consideró el peso propio de todos los elementos estructurales más una carga

permanente súper impuesta de 120 kg/m² que participa como masa acelerable en la

declaración de la carga total producto del evento sísmico.

Referente al modelo de materiales, se consideró que todo el edificio es de hormigón

reforzado.

3.3 HERRAMIENTAS PARA LA OBTENCIÓN DE RESULTADOS

Para la obtención de resultados en función de la aplicación de cada una de las

características de los modelos declarados en el acápite anterior, se hizo uso de la

herramienta informática para ordenador STAAD.PRO, el cuál es un programa

electrónico comercial enfocado para el análisis y diseño de estructuras.

Mediante el uso de este programa se analizaron todos los modelos matemáticos y se

obtuvieron los resultados que posteriormente se tabularon para mostrarse en el capítulo

de conclusiones y recomendaciones de este documento.

Apoyado en el código hondureño de la construcción CHOC-08, se obtuvo los criterios

necesarios para la consideración de las cargas de análisis, así como la interpretación

para considerar, según la norma, la rigidez el tipo de comportamiento de diafragma que

tiene las losas de los edificios analizados.

36

CAPÍTULO IV. RESULTADOS Y ANÁLISIS

4.1 EDIFICIO DE UN NIVEL DE ENTREPISO

Para el estudio de edificios de un nivel de entrepiso se evaluó considerando diferentes espesores de losa de entrepiso hasta encontrar el valor que satisface la asunción de diafragma rígido de piso. El modelo matemático utilizado es el que se muestra en figura 19.

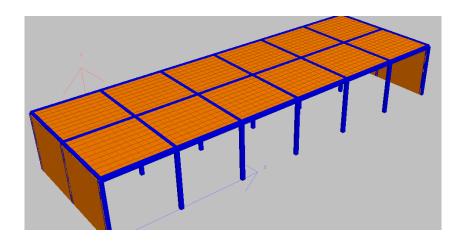


Figura 19. Modelo de un nivel, relación de losa 1 a 3: Modelo volumétrico de cada elemento estructural considerado.

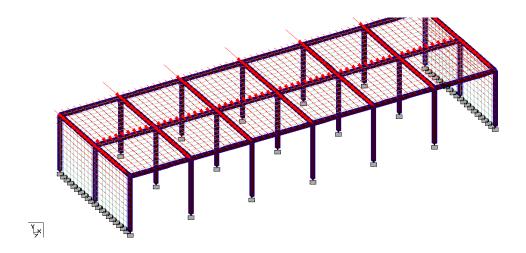


Figura 20. Modelo de un nivel, relación de losa 1 a 3: Ubicación, dirección y sentido de la carga horizontal utilizada.

Como se muestra en la figura anterior, se dispuso la colocación de muros de cortante en los extremos del edificio para realizar un efecto crítico de deformación de la losa atendiendo la teoría de deformación de una viga empotrada. La deformada de la losa se puede apreciar en la figura 21.

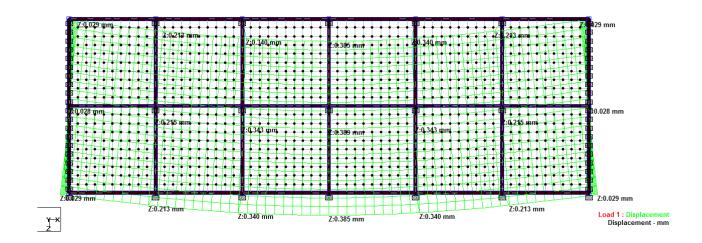


Figura 21. Vista en planta de la deformada de la losa de entrepiso con espesor de 9 cm y valores de desplazamientos para los nodos de las columnas.

En la figura se pueden apreciar los valores de las deformadas en milímetros para los nodos ubicados en la parte superior de las columnas. Debido a la mayor rigidez que proporcionan los muros de cortante contra la deformación en el sentido de la carga aplicada, el máximo desplazamiento se encuentra en la zona más alejada a ellos, esto es justo a la mitad de la ubicación entre los dos muros de cortante.

De lo anterior se puede percibir que la máxima deformación que sufre la losa de entrepiso es la diferencia que existe entre el valor máximo y el valor mínimo de los desplazamientos de los nodos, los cuales, en su conjunto forman el continuo de la losa de entrepiso.

Como se mencionó anteriormente en el capítulo III, la definición de diafragma rígido se cumple en el caso que la relación entre la deformación y el desplazamiento sea mayor que 2. Por lo anterior, se evaluó 18 diferentes espesores de losa para el mismo modelo

matemático encontrando la diversidad de resultados mostrados en la tabla 1.4 en los cuales se define el tipo de diafragma de piso que representa cada espesor de losa.

Tabla 4: Relación δ/Δ para diferentes espesores de losa en modelo de un nivel de entrepiso con relación de 1 a 3 en su planta.

EDIFICIO DE UN NIVEL DE ENTREPISO, RELACIÓN DE PLANTA 1 A 3							
Espeso r de losa	Desplazamient o máximo	Desplazamient o mínimo	Máxima deformació n δ	Desplazamient o promedio Δ	Relación δ/∆	Consideració n del diafragma	
cm	mm	mm	mm	mm		ulalrayilla	
9	0.389	0.028	0.361	0.028	12.892857 1	Flexible	
10	0.378	0.029	0.349	0.029	12.034482 8	Flexible	
15	0.345	0.035	0.31	0.035	8.8571428 6	Flexible	
20	0.329	0.041	0.288	0.041	7.0243902 4	Flexible	
25	0.321	0.047	0.274	0.047	5.8297872 3	Flexible	
30	0.316	0.053	0.263	0.053	4.9622641 5	Flexible	
35	0.315	0.058	0.257	0.058	4.4310344 8	Flexible	
40	0.315	0.064	0.251	0.064	3.921875	Flexible	
45	0.316	0.07	0.246	0.07	3.5142857 1	Flexible	
50	0.318	0.075	0.243	0.075	3.24	Flexible	
55	0.321	0.081	0.24	0.081	2.9629629 6	Flexible	
60	0.324	0.086	0.238	0.086	2.7674418 6	Flexible	
65	0.327	0.092	0.235	0.092	2.5543478 3	Flexible	
70	0.331	0.097	0.234	0.097	2.4123711 3	Flexible	
75	0.335	0.103	0.232	0.103	2.2524271 8	Flexible	
80	0.339	0.108	0.231	0.108	2.1388888 9	Flexible	
85	0.343	0.114	0.229	0.114	2.0087719	Flexible	
86	0.344	0.115	0.229	0.115	1.9913043 5	Rígido	

En la tabulación de datos anterior se observa que para utilizar el principio de utilizar la losa como diafragma rígido en un edificio con las características mostradas en la figura 19, se debe alcanzar un espesor de losa de aproximadamente 86 cm. Evidentemente este valor resulta demasiado alto como para considerarlo factible para un diseño de losa de entrepiso, además que es totalmente impráctico para cualquier diseño arquitectónico que se realizan normalmente.

Se puede apreciar por inspección de la figura 21 que la deformada de la losa podría disminuirse a medida que se reduzca la longitud del claro largo del entrepiso en relación a su ancho. Si la deformada se regula de manera que el desplazamiento disminuya, la relación deformación – desplazamiento será menor, consecuentemente se obtendrá valores que permitan considerar la losa de entrepiso con una rigidez suficiente para asumir que su efecto de diafragma permite transmitir las cargas horizontales en proporción a la rigidez de los elementos verticales soportantes.

El modelo matemático que representa el edificio de un nivel con relación de dimensiones en planta de 1 a 2 y los resultados de la relación deformación – desplazamiento se muestran en la figura 22 y en la tabla 5 respectivamente.

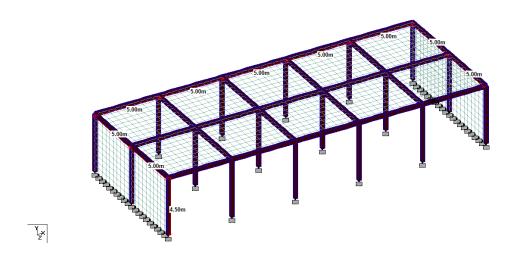


Figura 22. Modelo de un nivel, relación de losa 1 a 2.5: Modelo matemático estructural considerado.

Tabla 5: Relación δ/Δ para diferentes espesores de losa en modelo de un nivel de entrepiso con relación de 1 a 2.5 en su planta.

	EDIFICIO DE UN NIVEL DE ENTREPISO, RELACIÓN DE PLANTA 1 A 2.5							
Espesor de losa	Desplazamiento máximo	Desplazamiento mínimo	Máxima deformación δ	Desplazamiento promedio ∆	Relación δ/∆	Consideración del diafragma		
cm	mm	mm	mm	mm		,		
9	0.224	0.025	0.199	0.025	7.960	Flexible		
10	0.218	0.026	0.192	0.026	7.385	Flexible		
15	0.2	0.03	0.17	0.03	5.667	Flexible		
20	0.192	0.035	0.157	0.035	4.486	Flexible		
25	0.188	0.04	0.148	0.04	3.700	Flexible		
30	0.187	0.045	0.142	0.045	3.156	Flexible		
35	0.187	0.05	0.137	0.05	2.740	Flexible		
40	0.189	0.055	0.134	0.055	2.436	Flexible		
45	0.191	0.059	0.132	0.059	2.237	Flexible		
50	0.194	0.064	0.13	0.064	2.031	Flexible		
55	0.197	0.069	0.128	0.069	1.855	Rígido		
60	0.2	0.073	0.127	0.073	1.740	Rígido		
65	0.203	0.078	0.125	0.078	1.603	Rígido		
70	0.207	0.083	0.124	0.083	1.494	Rígido		
75	0.21	0.087	0.123	0.087	1.414	Rígido		
80	0.214	0.092	0.122	0.092	1.326	Rígido		
85	0.218	0.096	0.122	0.096	1.271	Rígido		
86	0.219	0.097	0.122	0.097	1.258	Rígido		

Como se supuso con anterioridad, en el caso de la losa de entrepiso con relación en planta de 1 a 2.5, se obtiene el efecto de diafragma rígido de piso con un espesor menor en comparación del caso del edificio estudiado previamente.

Con los resultados obtenidos anteriormente, es normal suponer que a menor relación largo – ancho de la planta del entrepiso, menor será el espesor requerido de la losa para asegurar, según la norma, el comportamiento de diafragma rígido. Los siguientes datos tabulados avalan esta aseveración.

Tabla 6: Relación δ/Δ para diferentes espesores de losa en modelo de un nivel de entrepiso con relación de 1 a 2 en su planta.

	EDIFICIO DE UN NIVEL DE ENTREPISO, RELACIÓN DE PLANTA 1 A 2							
Espesor de losa	Desplazamiento máximo	Desplazamiento mínimo	Máxima deformación δ	Desplazamiento promedio Δ	Relación δ/∆	Consideración del diafragma		
cm	mm	mm	mm	mm		J		
9	0.121	0.021	0.1	0.021	4.762	Flexible		
10	0.118	0.022	0.096	0.022	4.364	Flexible		
15	0.109	0.026	0.083	0.026	3.192	Flexible		
20	0.106	0.03	0.076	0.03	2.533	Flexible		
25	0.106	0.034	0.072	0.034	2.118	Flexible		
30	0.106	0.037	0.069	0.037	1.865	Rígido		
35	0.108	0.041	0.067	0.041	1.634	Rígido		
40	0.11	0.045	0.065	0.045	1.444	Rígido		
45	0.112	0.049	0.063	0.049	1.286	Rígido		
50	0.115	0.053	0.062	0.053	1.170	Rígido		
55	0.118	0.057	0.061	0.057	1.070	Rígido		
60	0.121	0.06	0.061	0.06	1.017	Rígido		
65	0.124	0.064	0.06	0.064	0.938	Rígido		
70	0.127	0.068	0.059	0.068	0.868	Rígido		
75	0.13	0.071	0.059	0.071	0.831	Rígido		
80	0.134	0.075	0.059	0.075	0.787	Rígido		
85	0.137	0.079	0.058	0.079	0.734	Rígido		
86	0.137	0.079	0.058	0.079	0.734	Rígido		

En el caso del modelo con relación de geometría de planta 1 a 2, los espesores de losa que satisface la premisa de diafragma rígido de planta son iguales a 30 cm y mayores.

Tabla 7: Relación δ/Δ para diferentes espesores de losa en modelo de un nivel de entrepiso con relación de 1 a 1.5 en su planta.

	EDIFICIO DE UN NIVEL DE ENTREPISO, RELACIÓN DE PLANTA 1 A 1.5						
Espesor de losa	Desplazamiento máximo	Desplazamiento mínimo	Máxima deformación δ	Desplazamiento promedio ∆	Relación δ/∆	Consideración del diafragma	
cm	mm	mm	mm	mm		J	
9	0.061	0.017	0.044	0.017	2.588	Flexible	
10	0.06	0.018	0.042	0.018	2.333	Flexible	
15	0.057	0.021	0.036	0.021	1.714	Rígido	
20	0.056	0.024	0.032	0.024	1.333	Rígido	
25	0.057	0.027	0.03	0.027	1.111	Rígido	
30	0.059	0.03	0.029	0.03	0.967	Rígido	
35	0.061	0.033	0.028	0.033	0.848	Rígido	
40	0.063	0.036	0.027	0.036	0.750	Rígido	
45	0.065	0.039	0.026	0.039	0.667	Rígido	
50	0.067	0.041	0.026	0.041	0.634	Rígido	
55	0.07	0.044	0.026	0.044	0.591	Rígido	
60	0.072	0.047	0.025	0.047	0.532	Rígido	
65	0.075	0.05	0.025	0.05	0.500	Rígido	
70	0.077	0.053	0.024	0.053	0.453	Rígido	
75	0.08	0.055	0.025	0.055	0.455	Rígido	
80	0.082	0.058	0.024	0.058	0.414	Rígido	
85	0.085	0.061	0.024	0.061	0.393	Rígido	
86	0.085	0.061	0.024	0.061	0.393	Rígido	

En el caso del modelo con relación de geometría de planta 1 a 1.5, los espesores de losa que satisface la premisa de diafragma rígido de planta son iguales a 15 cm y mayores.

Tabla 8: Relación δ/Δ para diferentes espesores de losa en modelo de un nivel de entrepiso con relación de 1 a 1 en su planta.

	EDIFICIO DE UN NIVEL DE ENTREPISO, RELACIÓN DE PLANTA 1 A 1						
Espesor de losa	Desplazamiento máximo	Desplazamiento mínimo	Máxima deformación δ	Desplazamiento promedio Δ	Relación δ/∆	Consideración del diafragma	
cm	mm	mm	mm	mm		•	
9	0.03	0.014	0.016	0.014	1.143	Rígido	
10	0.029	0.014	0.015	0.014	1.071	Rígido	
15	0.029	0.016	0.013	0.016	0.813	Rígido	
20	0.03	0.018	0.012	0.018	0.667	Rígido	
25	0.031	0.02	0.011	0.02	0.550	Rígido	
30	0.032	0.022	0.01	0.022	0.455	Rígido	
35	0.034	0.024	0.01	0.024	0.417	Rígido	
40	0.035	0.026	0.009	0.026	0.346	Rígido	
45	0.037	0.028	0.009	0.028	0.321	Rígido	
50	0.039	0.03	0.009	0.03	0.300	Rígido	
55	0.04	0.032	0.008	0.032	0.250	Rígido	
60	0.042	0.034	0.008	0.034	0.235	Rígido	
65	0.044	0.036	0.008	0.036	0.222	Rígido	
70	0.046	0.037	0.009	0.037	0.243	Rígido	
75	0.047	0.039	0.008	0.039	0.205	Rígido	
80	0.049	0.041	0.008	0.041	0.195	Rígido	
85	0.051	0.043	0.008	0.043	0.186	Rígido	
86	0.051	0.043	0.008	0.043	0.186	Rígido	

En el caso del modelo con relación de geometría de planta 1 a 1, el edificio por sus propias características de altura y de planta es suficientemente rígido para evitar que la losa de entrepiso se deforme en el sentido de la carga horizontal aplicada. Es por lo anterior que para todos los casos de espesores de las losas investigados cumplen con la premisa de comportarse como diafragmas rígidos.

Para comprender claramente el comportamiento de los datos tabulados anteriormente, se presenta el gráfico de la figura 23, que relaciona todos los valores considerados.

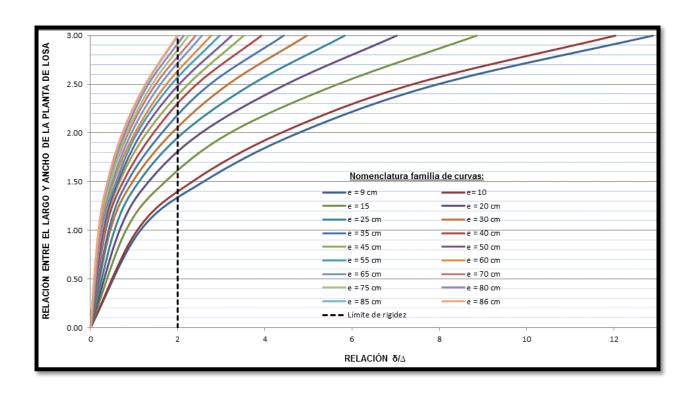


Figura 23: Espesores de losa para edificio de un nivel de entrepiso que relaciona la geometría en planta con las deformaciones y desplazamientos del piso.

En el gráfico de la figura 23, se aprecia como por ejemplo que para un edificio de un nivel de entrepiso con muros de cortante ubicados en los extremos del mismo tal como se observan en la figura 22, si el edificio tiene una relación de acho – largo en su planta de 1 a 1.5, se requiere de al menos un espesor de 15 cm para obtener una relación deformación – desplazamiento (δ/Δ) menor que 2, lo cual caracteriza a la losa como un diafragma rígido.

De la misma manera que en el ejemplo anterior y utilizando el mismo gráfico de la figura 23, se puede apreciar que para un edificio con de un nivel de entrepiso con elementos de rigidez en los extremos del mismo ubicados como los que se muestran en las figuras 19 y 20, para una relación en planta de su losa de 1 a 3, se requiere al menos un espesor de 86 cm para considerar la losa como un elemento lo suficientemente rígido para considerarlo como diafragma de piso.

4.2 EDIFICIO DE TRES NIVELES DE ENTREPISO

Para la relación de 1 a 3 y para cada losa de entrepiso que componen el edificio se encontraron los siguientes resultados:

Tabla 9: Relación δ/Δ para diferentes espesores de la primera losa de entrepiso en modelo de tres niveles con relación de 1 a 3 en su planta.

EDIFICIO	EDIFICIO DE TRES NIVELES CON RELACIÓN 1 A 3: PRIMERA LOSA DE ENTREPISO						
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ	Relación	Consideración del			
cm	mm	mm	δ/∆	diafragma			
10	0.166	0.134	1.236	Rígido			
9	0.171	0.129	1.325	Rígido			
8	0.178	0.124	1.434	Rígido			
7	0.186	0.119	1.561	Rígido			
6	0.196	0.114	1.717	Rígido			
5	0.209	0.109	1.915	Rígido			
4	0.228	0.104	2.185	Flexible			
3	0.254	0.099	2.560	Flexible			
2	0.300	0.095	3.165	Flexible			
1	0.412	0.089	4.608	Flexible			

Tabla 10: Relación δ/Δ para diferentes espesores de la segunda losa de entrepiso en modelo de tres niveles con relación de 1 a 3 en su planta.

EDIFICIO	EDIFICIO DE TRES NIVELES CON RELACIÓN 1 A 3: SEGUNDA LOSA DE ENTREPISO							
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ	Relación	Consideración del				
cm	mm	mm	δ/∆	diafragma				
10	0.338	0.332	1.017	Rígido				
9	0.350	0.319	1.096	Rígido				
8	0.364	0.307	1.183	Rígido				
7	0.381	0.294	1.293	Rígido				
6	0.401	0.282	1.420	Rígido				
5	0.429	0.269	1.592	Rígido				
4	0.466	0.257	1.810	Rígido				
3	0.521	0.244	2.134	Flexible				
2	0.615	0.232	2.649	Flexible				
1	0.845	0.219	3.860	Flexible				

Tabla 11: Relación δ/Δ para diferentes espesores de la tercera losa de entrepiso en modelo de tres niveles con relación de 1 a 3 en su planta.

	EDIFICIO DE TRES NIVELES CON RELACIÓN 1 A 3: TERCERA LOSA DE ENTREPISO						
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ	Relación	Consideración del			
cm	mm	mm	δ/Δ	diafragma			
10	0.49533333	0.51333333	0.96493507	Rígido			
9	0.48033333	0.53333333	0.900625	Rígido			
8	0.51366667	0.493	1.04192022	Rígido			
7	0.53533333	0.473	1.13178295	Rígido			
6	0.56333333	0.452	1.24631268	Rígido			
5	0.59866667	0.432	1.38580247	Rígido			
4	0.64766667	0.41166667	1.57327935	Rígido			
3	0.72033333	0.391	1.84228474	Rígido			
2	0.84366667	0.37066667	2.27607914	Flexible			
1	1.15	0.34966667	3.28884652	Flexible			

Para la relación de 1 a 2.5 y para cada losa de entrepiso que componen el edificio se encontraron los siguientes resultados:

Tabla 12: Relación δ/Δ para diferentes espesores de la primera losa de entrepiso en modelo de tres niveles con relación de 1 a 2.5 en su planta.

EDIFICIO	EDIFICIO DE TRES NIVELES CON RELACIÓN 1 A 2.5: PRIMERA LOSA DE ENTREPISO						
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ	Relación	Consideración del			
cm	mm	mm	- δ/∆	diafragma			
9.000	0.091	0.114	0.796	Rígido			
8.000	0.094	0.110	0.855	Rígido			
7.000	0.100	0.106	0.946	Rígido			
6.000	0.106	0.102	1.039	Rígido			
5.000	0.113	0.098	1.157	Rígido			
4.000	0.124	0.094	1.324	Rígido			
3.000	0.140	0.089	1.571	Rígido			
2.000	0.170	0.085	2.008	Flexible			
1.000	0.244	0.081	3.021	Flexible			

Tabla 13: Relación δ/Δ para diferentes espesores de la segunda losa de entrepiso en modelo de tres niveles con relación de 1 a 2.5 en su planta.

EDIFICIO I	EDIFICIO DE TRES NIVELES CON RELACIÓN 1 A 2.5: SEGUNDA LOSA DE ENTREPISO						
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ	Relación	Consideración del			
cm	mm	mm	δ/∆	diafragma			
9.000	0.187	0.281	0.664	Rígido			
8.000	0.194	0.271	0.715	Rígido			
7.000	0.204	0.260	0.784	Rígido			
6.000	0.216	0.250	0.863	Rígido			
5.000	0.232	0.239	0.969	Rígido			
4.000	0.254	0.229	1.108	Rígido			
3.000	0.288	0.218	1.319	Rígido			
2.000	0.346	0.208	1.661	Rígido			
1.000	0.497	0.197	2.519	Flexible			

Tabla 14: Relación δ/Δ para diferentes espesores de la tercera losa de entrepiso en modelo de tres niveles con relación de 1 a 2.5 en su planta.

EDIFICIO DE	EDIFICIO DE TRES NIVELES CON RELACIÓN 1 A 2.5: TERCERA LOSA DE ENTREPISO						
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ	Relación	Consideración del			
cm	mm	mm	δ/∆	diafragma			
9	0.265	0.451	0.588	Rígido			
8	0.276	0.434	0.636	Rígido			
7	0.288	0.417	0.691	Rígido			
6	0.305	0.400	0.762	Rígido			
5	0.326	0.383	0.850	Rígido			
4	0.355	0.366	0.970	Rígido			
3	0.399	0.349	1.143	Rígido			
2	0.478	0.332	1.439	Rígido			
1	0.680	0.315	2.162	Flexible			

Para la relación de 1 a 2 y para cada losa de entrepiso que componen el edificio se encontraron los siguientes resultados:

Tabla 15: Relación δ/Δ para diferentes espesores de la primera losa de entrepiso en modelo de tres niveles con relación de 1 a 2 en su planta.

EDIFICIO	EDIFICIO DE TRES NIVELES CON RELACIÓN 1 A 2: PRIMERA LOSA DE ENTREPISO						
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ	Relación	Consideración del			
cm	mm	mm	- δ/Δ	diafragma			
9	0.044	0.099	0.449	Rígido			
8	0.046	0.096	0.477	Rígido			
7	0.049	0.092	0.538	Rígido			
6	0.052	0.089	0.590	Rígido			
5	0.056	0.086	0.658	Rígido			
4	0.062	0.082	0.760	Rígido			
3	0.072	0.079	0.919	Rígido			
2	0.089	0.076	1.181	Rígido			
1	0.136	0.072	1.889	Rígido			

Tabla 16: Relación δ/Δ para diferentes espesores de la segunda losa de entrepiso en modelo de tres niveles con relación de 1 a 2 en su planta.

EDIFICIO	EDIFICIO DE TRES NIVELES CON RELACIÓN 1 A 2: SEGUNDA LOSA DE ENTREPISO				
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ	Relación	Consideración del	
cm	mm	mm	- δ/Δ	diafragma	
9	0.092	0.243	0.378	Rígido	
8	0.095	0.234	0.405	Rígido	
7	0.100	0.226	0.442	Rígido	
6	0.107	0.218	0.490	Rígido	
5	0.116	0.209	0.554	Rígido	
4	0.128	0.201	0.636	Rígido	
3	0.148	0.192	0.768	Rígido	
2	0.182	0.184	0.986	Rígido	
1	0.276	0.176	1.573	Rígido	

Tabla 1.17: Relación δ/Δ para diferentes espesores de la tercera losa de entrepiso en modelo de tres niveles con relación de 1 a 2 en su planta.

EDIFICIO	EDIFICIO DE TRES NIVELES CON RELACIÓN 1 A 2: TERCERA LOSA DE ENTREPISO				
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ	Relación	Consideración del	
cm	mm	mm	δ/∆	diafragma	
9	0.130	0.388	0.336	Rígido	
8	0.136	0.375	0.362	Rígido	
7	0.142	0.361	0.394	Rígido	
6	0.151	0.348	0.433	Rígido	
5	0.163	0.334	0.487	Rígido	
4	0.179	0.320	0.559	Rígido	
3	0.204	0.307	0.666	Rígido	
2	0.251	0.293	0.858	Rígido	
1	0.378	0.279	1.355	Rígido	

Para la relación de 1 a 1.5 y para cada losa de entrepiso que componen el edificio se encontraron los siguientes resultados:

Tabla 18: Relación δ/Δ para diferentes espesores de la primera losa de entrepiso en modelo de tres niveles con relación de 1 a 1.5 en su planta.

EDIFICIO	EDIFICIO DE TRES NIVELES CON RELACIÓN 1 A 1.5: PRIMERA LOSA DE ENTREPISO				
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ		Consideración del	
cm	mm	mm	δ/∆	diafragma	
9	0.018	0.083	0.217	Rígido	
8	0.019	0.081	0.231	Rígido	
7	0.020	0.078	0.256	Rígido	
6	0.021	0.076	0.276	Rígido	
5	0.023	0.073	0.320	Rígido	
4	0.026	0.071	0.366	Rígido	
3	0.031	0.068	0.461	Rígido	
2	0.040	0.066	0.606	Rígido	
1	0.065	0.063	1.032	Rígido	

Tabla 1.19: Relación δ/Δ para diferentes espesores de la segunda losa de entrepiso en modelo de tres niveles con relación de 1 a 1.5 en su planta.

EDIFICIO DE TRES NIVELES CON RELACIÓN 1 A 1.5: SEGUNDA LOSA DE ENTREPISO				
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ	Relación	Consideración del
cm	mm	mm	δ/∆	diafragma
9	0.038	0.204	0.184	Rígido
8	0.040	0.198	0.201	Rígido
7	0.042	0.192	0.217	Rígido
6	0.045	0.185	0.243	Rígido
5	0.050	0.179	0.278	Rígido
4	0.055	0.173	0.320	Rígido
3	0.065	0.166	0.389	Rígido
2	0.082	0.160	0.511	Rígido
1	0.132	0.154	0.861	Rígido

Tabla 20: Relación δ/Δ para diferentes espesores de la tercera losa de entrepiso en modelo de tres niveles con relación de 1 a 1.5 en su planta.

EDIFICIO	EDIFICIO DE TRES NIVELES CON RELACIÓN 1 A 1.5: TERCERA LOSA DE ENTREPISO				
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ	Relación	Consideración del	
cm	mm	mm	δ/∆	diafragma	
9	0.055	0.325	0.169	Rígido	
8	0.057	0.315	0.181	Rígido	
7	0.060	0.305	0.197	Rígido	
6	0.064	0.295	0.218	Rígido	
5	0.070	0.284	0.246	Rígido	
4	0.078	0.274	0.284	Rígido	
3	0.090	0.264	0.342	Rígido	
2	0.114	0.254	0.450	Rígido	
1	0.183	0.243	0.751	Rígido	

Para la relación de 1 a 1 y para cada losa de entrepiso que componen el edificio se encontraron los siguientes resultados:

Tabla 21: Relación δ/Δ para diferentes espesores de la primera losa de entrepiso en modelo de tres niveles con relación de 1 a 1 en su planta.

	EDIFICIO DE TRES NIVELES CON RELACIÓN 1 A 1: PRIMER LOSA DE ENTREPISO				
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ	Relación	Consideración del	
cm	mm	mm	δ/Δ	diafragma	
9	0.055	0.325	0.169	Rígido	
8	0.057	0.315	0.181	Rígido	
7	0.060	0.305	0.197	Rígido	
6	0.064	0.295	0.218	Rígido	
5	0.070	0.284	0.246	Rígido	
4	0.078	0.274	0.284	Rígido	
3	0.090	0.264	0.342	Rígido	
2	0.114	0.254	0.450	Rígido	
1	0.183	0.243	0.751	Rígido	

Tabla 22: Relación δ/Δ para diferentes espesores de la segunda losa de entrepiso en modelo de tres niveles con relación de 1 a 1 en su planta.

EDIFICIO DE TRES NIVELES CON RELACIÓN 1 A 1: SEGUNDA LOSA DE ENTREPISO				
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ	Relación	Consideración del
cm	mm	mm	δ/∆	diafragma
9	0.013	0.165	0.077	Rígido
8	0.014	0.161	0.089	Rígido
7	0.015	0.157	0.096	Rígido
6	0.016	0.153	0.105	Rígido
5	0.018	0.148	0.119	Rígido
4	0.020	0.144	0.141	Rígido
3	0.024	0.140	0.174	Rígido
2	0.032	0.136	0.236	Rígido
1	0.054	0.132	0.410	Rígido

Tabla 23: Relación δ/Δ para diferentes espesores de la tercera losa de entrepiso en modelo de tres niveles con relación de 1 a 1 en su planta.

EDIFICIO DE TRES NIVELES CON RELACIÓN 1 A 1: TERCERA LOSA DE ENTREPISO				
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ	Relación	Consideración del
cm	mm	mm	δ/∆	diafragma
9	0.019	0.262	0.071	Rígido
8	0.020	0.255	0.077	Rígido
7	0.021	0.248	0.086	Rígido
6	0.023	0.241	0.094	Rígido
5	0.025	0.234	0.108	Rígido
4	0.029	0.227	0.126	Rígido
3	0.034	0.221	0.152	Rígido
2	0.044	0.214	0.206	Rígido
1	0.075	0.207	0.361	Rígido

4.3 EDIFICIO DE CINCO NIVELES DE ENTREPISO

Para la relación de 1 a 2.5 y para cada losa de entrepiso que componen el edificio se encontraron los siguientes resultados:

Tabla 24: Relación δ/Δ para diferentes espesores de la primera losa de entrepiso en modelo de cinco niveles con relación de 1 a 2.5 en su planta.

EDIFICIO D	EDIFICIO DE CINCO NIVELES CON RELACIÓN 1 A 2.5: PRIMERA LOSA DE ENTREPISO				
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ	Relación	Consideración del	
cm	mm	mm	δ/∆	diafragma	
10	0.081	0.232	0.351	Rígido	
9	0.083	0.224	0.371	Rígido	
8	0.084	0.216	0.388	Rígido	
7	0.087	0.208	0.416	Rígido	
6	0.090	0.200	0.449	Rígido	
5	0.094	0.193	0.486	Rígido	
4	0.100	0.185	0.543	Rígido	
3	0.109	0.178	0.614	Rígido	
2	0.128	0.170	0.754	Rígido	
1	0.176	0.162	1.088	Rígido	

Tabla 25: Relación δ/Δ para diferentes espesores de la segunda losa de entrepiso en modelo de cinco niveles con relación de 1 a 2.5 en su planta.

EDIFICIO DE CINCO NIVELES CON RELACIÓN 1 A 2.5: SEGUNDA LOSA DE ENTREPISO				
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ	Relación	Consideración del
cm	mm	mm	δ/∆	diafragma
10	0.200	0.653	0.306	Rígido
9	0.201	0.631	0.319	Rígido
8	0.204	0.609	0.335	Rígido
7	0.207	0.587	0.352	Rígido
6	0.212	0.565	0.375	Rígido
5	0.220	0.542	0.407	Rígido
4	0.231	0.520	0.445	Rígido
3	0.251	0.498	0.504	Rígido
2	0.288	0.475	0.605	Rígido
1	0.390	0.453	0.860	Rígido

Tabla 26: Relación δ/Δ para diferentes espesores de la tercera losa de entrepiso en modelo de cinco niveles con relación de 1 a 2.5 en su planta.

EDIFICIO DE CINCO NIVELES CON RELACIÓN 1 A 2.5: TERCERA LOSA DE ENTREPISO				
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ	Relación	Consideración del
cm	mm	mm	δ/∆	diafragma
10	0.330	1.188	0.278	Rígido
9	0.332	1.147	0.290	Rígido
8	0.334	1.107	0.302	Rígido
7	0.338	1.067	0.317	Rígido
6	0.345	1.026	0.336	Rígido
5	0.355	0.986	0.360	Rígido
4	0.371	0.945	0.393	Rígido
3	0.399	0.904	0.441	Rígido
2	0.453	0.863	0.524	Rígido
1	0.601	0.822	0.731	Rígido

Tabla 27: Relación δ/Δ para diferentes espesores de la cuarta losa de entrepiso en modelo de cinco niveles con relación de 1 a 2.5 en su planta.

EDIFICIO	EDIFICIO DE CINCO NIVELES CON RELACIÓN 1 A 2.5: CUARTA LOSA DE ENTREPISO				
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ	Relación	Consideración del	
cm	mm	mm	δ/∆	diafragma	
10	0.468	1.770	0.265	Rígido	
9	0.468	1.710	0.274	Rígido	
8	0.470	1.649	0.285	Rígido	
7	0.475	1.589	0.299	Rígido	
6	0.483	1.528	0.316	Rígido	
5	0.495	1.467	0.338	Rígido	
4	0.516	1.406	0.367	Rígido	
3	0.551	1.344	0.410	Rígido	
2	0.621	1.283	0.484	Rígido	
1	0.810	1.221	0.663	Rígido	

Tabla 28: Relación δ/Δ para diferentes espesores de la quinta losa de entrepiso en modelo de cinco niveles con relación de 1 a 2.5 en su planta.

EDIFICIO D	EDIFICIO DE CINCO NIVELES CON RELACIÓN 1 A 2.5: SEGUNDA LOSA DE ENTREPISO				
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ	Relación	Consideración del	
cm	mm	mm	- δ/∆	diafragma	
10	0.588	2.348	0.250	Rígido	
9	0.580	2.268	0.256	Rígido	
8	0.578	2.188	0.264	Rígido	
7	0.581	2.107	0.276	Rígido	
6	0.587	2.026	0.290	Rígido	
5	0.599	1.944	0.308	Rígido	
4	0.618	1.863	0.332	Rígido	
3	0.652	1.781	0.366	Rígido	
2	0.724	1.699	0.426	Rígido	
1	0.925	1.616	0.573	Rígido	

Para la relación de 1 a 2 y para cada losa de entrepiso que componen el edificio se encontraron los siguientes resultados:

Tabla 29: Relación δ/Δ para diferentes espesores de la primera losa de entrepiso en modelo de cinco niveles con relación de 1 a 2 en su planta.

EDIFICIO DE CINCO NIVELES CON RELACIÓN 1 A 2: PRIMERA LOSA DE ENTREPISO				
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ	Relación	Consideración del
cm	mm	mm	- δ/∆	diafragma
10	0.024	0.222	0.106	Rígido
9	0.025	0.215	0.115	Rígido
8	0.027	0.208	0.128	Rígido
7	0.029	0.201	0.142	Rígido
6	0.030	0.195	0.156	Rígido
5	0.033	0.188	0.178	Rígido
4	0.038	0.181	0.212	Rígido
3	0.044	0.174	0.253	Rígido
2	0.056	0.167	0.335	Rígido
1	0.087	0.160	0.544	Rígido

Tabla 30: Relación δ/Δ para diferentes espesores de la segunda losa de entrepiso en modelo de cinco niveles con relación de 1 a 2 en su planta.

EDIFICIO DE CINCO NIVELES CON RELACIÓN 1 A 2: SEGUNDA LOSA DE ENTREPISO				
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ	Relación	Consideración del
cm	mm	mm	δ/∆	diafragma
10	0.056	0.626	0.089	Rígido
9	0.058	0.607	0.095	Rígido
8	0.061	0.587	0.103	Rígido
7	0.064	0.567	0.113	Rígido
6	0.069	0.547	0.127	Rígido
5	0.075	0.528	0.142	Rígido
4	0.083	0.508	0.164	Rígido
3	0.097	0.488	0.199	Rígido
2	0.121	0.468	0.259	Rígido
1	0.186	0.448	0.414	Rígido

Tabla 31: Relación δ/Δ para diferentes espesores de la tercera losa de entrepiso en modelo de cinco niveles con relación de 1 a 2 en su planta.

EDIFICIO DE CINCO NIVELES CON RELACIÓN 1 A 2: TERCERA LOSA DE ENTREPISO				
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ	Relación	Consideración del
cm	mm	mm	δ/∆	diafragma
10	0.086	1.139	0.076	Rígido
9	0.090	1.103	0.082	Rígido
8	0.094	1.067	0.088	Rígido
7	0.099	1.031	0.096	Rígido
6	0.107	0.994	0.108	Rígido
5	0.116	0.958	0.121	Rígido
4	0.128	0.922	0.139	Rígido
3	0.148	0.886	0.167	Rígido
2	0.184	0.849	0.216	Rígido
1	0.280	0.812	0.345	Rígido

Tabla 32: Relación δ/∆ para diferentes espesores de la cuarta losa de entrepiso en modelo de cinco niveles con relación de 1 a 2 en su planta.

EDIFICIO DE CINCO NIVELES CON RELACIÓN 1 A 2: CUARTA LOSA DE ENTREPISO				
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ	Relación	Consideración del
cm	mm	mm	δ/∆	diafragma
10	0.118	1.695	0.070	Rígido
9	0.122	1.642	0.074	Rígido
8	0.127	1.588	0.080	Rígido
7	0.134	1.534	0.087	Rígido
6	0.144	1.480	0.097	Rígido
5	0.156	1.425	0.109	Rígido
4	0.172	1.371	0.125	Rígido
3	0.198	1.316	0.150	Rígido
2	0.246	1.261	0.195	Rígido
1	0.373	1.206	0.309	Rígido

Tabla 33: Relación δ/Δ para diferentes espesores de la quinta losa de entrepiso en modelo de cinco niveles con relación de 1 a 2 en su planta.

EDIFICIO	EDIFICIO DE CINCO NIVELES CON RELACIÓN 1 A 2: QUINTA LOSA DE ENTREPISO				
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ	Relación	Consideración del	
cm	mm	mm	δ/∆	diafragma	
10	0.136	2.248	0.060	Rígido	
9	0.140	2.177	0.064	Rígido	
8	0.146	2.105	0.070	Rígido	
7	0.154	2.033	0.076	Rígido	
6	0.163	1.961	0.083	Rígido	
5	0.176	1.888	0.093	Rígido	
4	0.193	1.816	0.106	Rígido	
3	0.220	1.743	0.126	Rígido	
2	0.271	1.670	0.162	Rígido	
1	0.408	1.596	0.256	Rígido	

Para la relación de 1 a 1.5 y para cada losa de entrepiso que componen el edificio se encontraron los siguientes resultados:

Tabla 34: Relación δ/Δ para diferentes espesores de la primera losa de entrepiso en modelo de cinco niveles con relación de 1 a 1.5 en su planta.

EDIFICIO D	EDIFICIO DE CINCO NIVELES CON RELACIÓN 1 A 1.5: PRIMERA LOSA DE ENTREPISO				
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ	Relación	Consideración del	
cm	mm	mm	δ/∆	diafragma	
10	0.007	0.187	0.037	Rígido	
9	0.007	0.182	0.040	Rígido	
8	0.008	0.177	0.045	Rígido	
7	0.009	0.172	0.052	Rígido	
6	0.011	0.166	0.064	Rígido	
5	0.012	0.161	0.072	Rígido	
4	0.014	0.156	0.087	Rígido	
3	0.018	0.150	0.118	Rígido	
2	0.024	0.145	0.163	Rígido	
1	0.041	0.140	0.290	Rígido	

Tabla 35: Relación δ/Δ para diferentes espesores de la segunda losa de entrepiso en modelo de cinco niveles con relación de 1 a 1.5 en su planta.

EDIFICIO DE CINCO NIVELES CON RELACIÓN 1 A 1.5: SEGUNDA LOSA DE ENTREPISO				
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ	Relación	Consideración del
cm	mm	mm	δ/∆	diafragma
10	0.021	0.526	0.040	Rígido
9	0.022	0.511	0.043	Rígido
8	0.024	0.496	0.048	Rígido
7	0.026	0.481	0.053	Rígido
6	0.027	0.467	0.058	Rígido
5	0.030	0.452	0.066	Rígido
4	0.034	0.437	0.078	Rígido
3	0.041	0.422	0.096	Rígido
2	0.053	0.407	0.130	Rígido
1	0.086	0.393	0.220	Rígido

Tabla 36: Relación δ/Δ para diferentes espesores de la tercera losa de entrepiso en modelo de cinco niveles con relación de 1 a 1.5 en su planta.

EDIFICIO DE CINCO NIVELES CON RELACIÓN 1 A 1.5: TERCERA LOSA DE ENTREPISO				
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ	Relación	Consideración del
cm	mm	mm	δ/∆	diafragma
10	0.035	0.956	0.036	Rígido
9	0.036	0.929	0.039	Rígido
8	0.038	0.902	0.042	Rígido
7	0.041	0.875	0.046	Rígido
6	0.044	0.848	0.052	Rígido
5	0.048	0.821	0.058	Rígido
4	0.054	0.793	0.068	Rígido
3	0.064	0.766	0.083	Rígido
2	0.081	0.739	0.110	Rígido
1	0.132	0.711	0.186	Rígido

Tabla 37: Relación δ/Δ para diferentes espesores de la cuarta losa de entrepiso en modelo de cinco niveles con relación de 1 a 1.5 en su planta.

EDIFICIO D	EDIFICIO DE CINCO NIVELES CON RELACIÓN 1 A 1.5: CUARTA LOSA DE ENTREPISO				
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ	Relación	Consideración del	
cm	mm	mm	δ/∆	diafragma	
10	0.048	1.422	0.034	Rígido	
9	0.050	1.382	0.036	Rígido	
8	0.053	1.341	0.040	Rígido	
7	0.056	1.301	0.043	Rígido	
6	0.060	1.260	0.047	Rígido	
5	0.065	1.219	0.053	Rígido	
4	0.073	1.178	0.062	Rígido	
3	0.086	1.137	0.076	Rígido	
2	0.110	1.095	0.100	Rígido	
1	0.177	1.054	0.168	Rígido	

Tabla 38: Relación δ/Δ para diferentes espesores de la quinta losa de entrepiso en modelo de cinco niveles con relación de 1 a 1.5 en su planta.

EDIFICIO D	EDIFICIO DE CINCO NIVELES CON RELACIÓN 1 A 1.5: SEGUNDA LOSA DE ENTREPISO				
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ	Relación	Consideración del	
cm	mm	mm	δ/∆	diafragma	
10	0.057	1.884	0.030	Rígido	
9	0.059	1.830	0.032	Rígido	
8	0.062	1.776	0.035	Rígido	
7	0.065	1.722	0.038	Rígido	
6	0.069	1.668	0.041	Rígido	
5	0.075	1.613	0.046	Rígido	
4	0.084	1.558	0.054	Rígido	
3	0.097	1.504	0.065	Rígido	
2	0.123	1.449	0.085	Rígido	
1	0.195	1.394	0.140	Rígido	

Para la relación de 1 a 1 y para cada losa de entrepiso que componen el edificio se encontraron los siguientes resultados:

Tabla 39: Relación δ/Δ para diferentes espesores de la primera losa de entrepiso en modelo de cinco niveles con relación de 1 a 1 en su planta.

EDIFICIO I	EDIFICIO DE CINCO NIVELES CON RELACIÓN 1 A 1: PRIMERA LOSA DE ENTREPISO				
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ	Relación	Consideración del	
cm	mm	mm	δ/∆	diafragma	
10	0.029	0.137	0.214	Rígido	
9	0.030	0.133	0.228	Rígido	
8	0.029	0.130	0.226	Rígido	
7	0.028	0.127	0.223	Rígido	
6	0.027	0.124	0.220	Rígido	
5	0.027	0.121	0.220	Rígido	
4	0.026	0.118	0.218	Rígido	
3	0.025	0.114	0.222	Rígido	
2	0.025	0.111	0.222	Rígido	
1	0.027	0.108	0.252	Rígido	

Tabla 40: Relación δ/Δ para diferentes espesores de la segunda losa de entrepiso en modelo de cinco niveles con relación de 1 a 1 en su planta.

EDIFICIO [EDIFICIO DE CINCO NIVELES CON RELACIÓN 1 A 1: SEGUNDA LOSA DE ENTREPISO				
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ	Relación	Consideración del	
cm	mm	mm	δ/∆	diafragma	
10	0.085	0.383	0.221	Rígido	
9	0.082	0.375	0.219	Rígido	
8	0.080	0.366	0.219	Rígido	
7	0.078	0.357	0.219	Rígido	
6	0.076	0.348	0.219	Rígido	
5	0.075	0.339	0.220	Rígido	
4	0.073	0.330	0.220	Rígido	
3	0.071	0.321	0.220	Rígido	
2	0.069	0.312	0.220	Rígido	
1	0.068	0.303	0.224	Rígido	

Tabla 41: Relación δ/Δ para diferentes espesores de la tercera losa de entrepiso en modelo de cinco niveles con relación de 1 a 1 en su planta.

EDIFICIO DE CINCO NIVELES CON RELACIÓN 1 A 1: TERCERA LOSA DE ENTREPISO				
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ	Relación	Consideración del
cm	mm	mm	δ/∆	diafragma
10	0.153	0.696	0.219	Rígido
9	0.149	0.680	0.219	Rígido
8	0.146	0.663	0.220	Rígido
7	0.142	0.647	0.219	Rígido
6	0.138	0.631	0.219	Rígido
5	0.135	0.614	0.219	Rígido
4	0.131	0.598	0.219	Rígido
3	0.128	0.581	0.220	Rígido
2	0.124	0.565	0.219	Rígido
1	0.121	0.548	0.220	Rígido

Tabla 42: Relación δ/Δ para diferentes espesores de la cuarta losa de entrepiso en modelo de cinco niveles con relación de 1 a 1 en su planta.

EDIFICIO	EDIFICIO DE CINCO NIVELES CON RELACIÓN 1 A 1: CUARTA LOSA DE ENTREPISO				
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ	Relación	Consideración del	
cm	mm	mm	δ/∆	diafragma	
10	0.227	1.034	0.219	Rígido	
9	0.221	1.010	0.219	Rígido	
8	0.217	0.985	0.220	Rígido	
7	0.211	0.961	0.219	Rígido	
6	0.206	0.936	0.220	Rígido	
5	0.200	0.911	0.219	Rígido	
4	0.195	0.887	0.220	Rígido	
3	0.189	0.862	0.219	Rígido	
2	0.184	0.837	0.220	Rígido	
1	0.178	0.812	0.219	Rígido	

Tabla 43: Relación δ/∆ para diferentes espesores de la quinta losa de entrepiso en modelo de cinco niveles con relación de 1 a 1 en su planta.

EDIFICIO	EDIFICIO DE CINCO NIVELES CON RELACIÓN 1 A 1: QUINTA LOSA DE ENTREPISO				
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ	Relación	Consideración del	
cm	mm	mm	- δ/∆	diafragma	
10	0.300	1.368	0.219	Rígido	
9	0.293	1.335	0.219	Rígido	
8	0.286	1.303	0.219	Rígido	
7	0.278	1.270	0.219	Rígido	
6	0.271	1.237	0.219	Rígido	
5	0.264	1.204	0.219	Rígido	
4	0.257	1.171	0.219	Rígido	
3	0.250	1.138	0.219	Rígido	
2	0.242	1.105	0.219	Rígido	
1	0.235	1.072	0.219	Rígido	

4.4 EDIFICIO DE SEIS NIVELES DE ENTREPISO

Para la relación de 1 a 3 y para cada losa de entrepiso que componen el edificio se encontraron los siguientes resultados:

Tabla 44: Relación δ/Δ para diferentes espesores de la primera losa de entrepiso en modelo de seis niveles con relación de 1 a 3 en su planta.

EDIFICIO DE SEIS NIVELES CON RELACIÓN 1 A 3: PRIMERA LOSA DE ENTREPISO				
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ	Relación	Consideración del
cm	mm	mm	δ/∆	diafragma
10	0.123	0.345	0.356	Rígido
9	0.127	0.337	0.376	Rígido
8	0.131	0.328	0.399	Rígido
7	0.134	0.316	0.423	Rígido
6	0.138	0.303	0.457	Rígido
5	0.145	0.290	0.499	Rígido
4	0.154	0.278	0.553	Rígido
3	0.168	0.266	0.631	Rígido
2	0.193	0.253	0.763	Rígido
1	0.256	0.240	1.064	Rígido

Tabla 45: Relación δ/Δ para diferentes espesores de la segunda a losa de entrepiso en modelo de seis niveles con relación de 1 a 3 en su planta.

EDIFICIO	EDIFICIO DE SEIS NIVELES CON RELACIÓN 1 A 3: SEGUNDA LOSA DE ENTREPISO				
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ	Relación	Consideración del	
cm	mm	mm	δ/∆	diafragma	
10	0.311	1.012	0.307	Rígido	
9	0.315	0.988	0.318	Rígido	
8	0.320	0.960	0.333	Rígido	
7	0.323	0.924	0.349	Rígido	
6	0.328	0.887	0.370	Rígido	
5	0.340	0.850	0.400	Rígido	
4	0.358	0.814	0.440	Rígido	
3	0.387	0.777	0.498	Rígido	
2	0.440	0.739	0.596	Rígido	
1	0.575	0.702	0.819	Rígido	

Tabla 46: Relación δ/Δ para diferentes espesores de la tercera a losa de entrepiso en modelo de seis niveles con relación de 1 a 3 en su planta.

EDIFICIO DE SEIS NIVELES CON RELACIÓN 1 A 3: TERCERA LOSA DE ENTREPISO				
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ	Relación	Consideración del
cm	mm	mm	δ/∆	diafragma
10	0.527	1.902	0.277	Rígido
9	0.531	1.857	0.286	Rígido
8	0.536	1.805	0.297	Rígido
7	0.539	1.736	0.311	Rígido
6	0.544	1.667	0.326	Rígido
5	0.555	1.598	0.347	Rígido
4	0.574	1.528	0.376	Rígido
3	0.613	1.458	0.421	Rígido
2	0.689	1.388	0.497	Rígido
1	0.888	1.317	0.674	Rígido

Tabla 47: Relación δ/Δ para diferentes espesores de la cuarta a losa de entrepiso en modelo de seis niveles con relación de 1 a 3 en su planta.

EDIFICIO	EDIFICIO DE SEIS NIVELES CON RELACIÓN 1 A 3: CUARTA LOSA DE ENTREPISO				
Espesor de losa	Máxima deformación δ	Desplazamiento promedio ∆	Relación	Consideración del	
cm	mm	mm	δ/∆	diafragma	
10	0.763	2.921	0.261	Rígido	
9	0.768	2.852	0.269	Rígido	
8	0.773	2.772	0.279	Rígido	
7	0.774	2.666	0.290	Rígido	
6	0.780	2.559	0.305	Rígido	
5	0.791	2.452	0.323	Rígido	
4	0.813	2.345	0.347	Rígido	
3	0.853	2.237	0.381	Rígido	
2	0.951	2.128	0.447	Rígido	
1	1.212	2.019	0.600	Rígido	

Tabla 48: Relación δ/Δ para diferentes espesores de la quinta a losa de entrepiso en modelo de seis niveles con relación de 1 a 3 en su planta.

EDIFICIO	EDIFICIO DE SEIS NIVELES CON RELACIÓN 1 A 3: QUINTA LOSA DE ENTREPISO				
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ	Relación	Consideración del	
cm	mm	mm	δ/∆	diafragma	
10	1.007	3.992	0.252	Rígido	
9	1.012	3.897	0.260	Rígido	
8	1.016	3.788	0.268	Rígido	
7	1.016	3.642	0.279	Rígido	
6	1.020	3.496	0.292	Rígido	
5	1.032	3.349	0.308	Rígido	
4	1.056	3.202	0.330	Rígido	
3	1.103	3.053	0.361	Rígido	
2	1.210	2.904	0.417	Rígido	
1	1.524	2.754	0.553	Rígido	

Tabla 49: Relación δ/Δ para diferentes espesores de la sexta a losa de entrepiso en modelo de seis niveles con relación de 1 a 3 en su planta.

EDIFICIO DE SEIS NIVELES CON RELACIÓN 1 A 3: SEXTA LOSA DE ENTREPISO				
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ	Relación	Consideración del
cm	mm	mm	- δ/∆	diafragma
10	1.205	5.057	0.238	Rígido
9	1.201	4.937	0.243	Rígido
8	1.201	4.797	0.250	Rígido
7	1.194	4.613	0.259	Rígido
6	1.193	4.427	0.270	Rígido
5	1.199	4.241	0.283	Rígido
4	1.218	4.053	0.300	Rígido
3	1.259	3.865	0.326	Rígido
2	1.349	3.676	0.367	Rígido
1	1.646	3.485	0.472	Rígido

4.5 EDIFICIO DE NUEVE NIVELES DE ENTREPISO

Para la relación de 1 a 3 y para cada losa de entrepiso que componen el edificio se encontraron los siguientes resultados:

Tabla 50: Relación δ/Δ para diferentes espesores de la primera losa de entrepiso en modelo de nueve niveles con relación de 1 a 3 en su planta.

EDIFICIO DE NUEVE NIVELES CON RELACIÓN 1 A 3: PRIMERA LOSA DE ENTREPISO				
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ	Relación	Consideración del
cm	mm	mm	δ/∆	diafragma
10	0.032	0.484	0.065	Rígido
9	0.034	0.474	0.071	Rígido
8	0.036	0.464	0.078	Rígido
7	0.040	0.453	0.088	Rígido
6	0.043	0.443	0.098	Rígido
5	0.048	0.432	0.111	Rígido
4	0.054	0.421	0.128	Rígido
3	0.064	0.409	0.156	Rígido
2	0.081	0.398	0.205	Rígido
1	0.122	0.386	0.317	Rígido

Tabla 51: Relación δ/Δ para diferentes espesores de la segunda losa de entrepiso en modelo de nueve niveles con relación de 1 a 3 en su planta.

EDIFICIO DE NUEVE NIVELES CON RELACIÓN 1 A 3: SEGUNDA LOSA DE ENTREPISO				
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ	Relación	Consideración del
cm	mm	mm	δ/∆	diafragma
10	0.073	1.526	0.048	Rígido
9	0.077	1.494	0.051	Rígido
8	0.082	1.461	0.056	Rígido
7	0.087	1.427	0.061	Rígido
6	0.094	1.393	0.067	Rígido
5	0.102	1.359	0.075	Rígido
4	0.114	1.323	0.086	Rígido
3	0.131	1.288	0.102	Rígido
2	0.161	1.251	0.129	Rígido
1	0.239	1.211	0.197	Rígido

Tabla 52: Relación δ/Δ para diferentes espesores de la tercera losa de entrepiso en modelo de nueve niveles con relación de 1 a 3 en su planta.

EDIFICIO DE NUEVE NIVELES CON RELACIÓN 1 A 3: TERCERA LOSA DE ENTREPISO				
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ	Relación	Consideración del
cm	mm	mm	δ/∆	diafragma
10	0.112	3.024	0.037	Rígido
9	0.117	2.960	0.040	Rígido
8	0.123	2.895	0.043	Rígido
7	0.131	2.828	0.046	Rígido
6	0.140	2.761	0.051	Rígido
5	0.152	2.692	0.056	Rígido
4	0.167	2.622	0.064	Rígido
3	0.191	2.551	0.075	Rígido
2	0.233	2.477	0.094	Rígido
1	0.341	2.398	0.142	Rígido

Tabla 53: Relación δ/Δ para diferentes espesores de la cuarta losa de entrepiso en modelo de nueve niveles con relación de 1 a 3 en su planta.

EDIFICIO DE NUEVE NIVELES CON RELACIÓN 1 A 3: CUARTA LOSA DE ENTREPISO				
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ	Relación	Consideración del
cm	mm	mm	δ/∆	diafragma
10	0.150	4.872	0.031	Rígido
9	0.158	4.769	0.033	Rígido
8	0.165	4.664	0.035	Rígido
7	0.175	4.557	0.038	Rígido
6	0.186	4.448	0.042	Rígido
5	0.201	4.337	0.046	Rígido
4	0.222	4.223	0.053	Rígido
3	0.252	4.107	0.061	Rígido
2	0.305	3.988	0.076	Rígido
1	0.442	3.862	0.114	Rígido

Tabla 54: Relación δ/Δ para diferentes espesores de la quinta losa de entrepiso en modelo de nueve niveles con relación de 1 a 3 en su planta.

EDIFICIO DE NUEVE NIVELES CON RELACIÓN 1 A 3: QUINTA LOSA DE ENTREPISO				
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ	Relación	Consideración del
cm	mm	mm	δ/∆	diafragma
10	0.189	6.971	0.027	Rígido
9	0.197	6.823	0.029	Rígido
8	0.207	6.672	0.031	Rígido
7	0.219	6.519	0.034	Rígido
6	0.233	6.362	0.037	Rígido
5	0.251	6.203	0.041	Rígido
4	0.276	6.041	0.046	Rígido
3	0.313	5.875	0.053	Rígido
2	0.377	5.704	0.066	Rígido
1	0.545	5.522	0.099	Rígido

Tabla 55: Relación δ/Δ para diferentes espesores de la sexta losa de entrepiso en modelo de nueve niveles con relación de 1 a 3 en su planta.

EDIFICIO DE NUEVE NIVELES CON RELACIÓN 1 A 3: SEXTA LOSA DE ENTREPISO				
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ	Relación	Consideración del
cm	mm	mm	δ/∆	diafragma
10	0.228	9.231	0.025	Rígido
9	0.237	9.035	0.026	Rígido
8	0.249	8.835	0.028	Rígido
7	0.263	8.632	0.030	Rígido
6	0.279	8.425	0.033	Rígido
5	0.301	8.214	0.037	Rígido
4	0.331	7.998	0.041	Rígido
3	0.374	7.778	0.048	Rígido
2	0.451	7.551	0.060	Rígido
1	0.649	7.310	0.089	Rígido

Tabla 56: Relación δ/Δ para diferentes espesores de la séptima losa de entrepiso en modelo de nueve niveles con relación de 1 a 3 en su planta.

EDIFICIO DE NUEVE NIVELES CON RELACIÓN 1 A 3: SÉPTIMA LOSA DE ENTREPISO				
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ	Relación	Consideración del
cm	mm	mm	- δ/∆	diafragma
10	0.267	11.581	0.023	Rígido
9	0.278	11.335	0.025	Rígido
8	0.292	11.084	0.026	Rígido
7	0.307	10.829	0.028	Rígido
6	0.327	10.569	0.031	Rígido
5	0.351	10.304	0.034	Rígido
4	0.386	10.033	0.038	Rígido
3	0.436	9.756	0.045	Rígido
2	0.525	9.470	0.055	Rígido
1	0.755	9.167	0.082	Rígido

Tabla 57: Relación δ/Δ para diferentes espesores de la octava losa de entrepiso en modelo de nueve niveles con relación de 1 a 3 en su planta.

EDIFICIO DE NUEVE NIVELES CON RELACIÓN 1 A 3: OCTAVA LOSA DE ENTREPISO				
Espesor de losa	Máxima deformación δ	Desplazamiento promedio Δ	Relación	Consideración del
cm	mm	mm	δ/∆	diafragma
10	0.307	13.961	0.022	Rígido
9	0.320	13.664	0.023	Rígido
8	0.335	13.361	0.025	Rígido
7	0.352	13.053	0.027	Rígido
6	0.374	12.739	0.029	Rígido
5	0.403	12.419	0.032	Rígido
4	0.441	12.091	0.036	Rígido
3	0.498	11.757	0.042	Rígido
2	0.595	11.412	0.052	Rígido
1	0.847	11.046	0.077	Rígido

Tabla 58: Relación δ/Δ para diferentes espesores de la novena losa de entrepiso en modelo de nueve niveles con relación de 1 a 3 en su planta.

EDIFICIO	EDIFICIO DE NUEVE NIVELES CON RELACIÓN 1 A 3: NOVENA LOSA DE ENTREPISO				
Espesor de losa	Máxima deformación δ	Desplazamiento promedio ∆	Relación	Consideración del	
cm	mm	mm	- δ/Δ	diafragma	
10	0.273	16.331	0.017	Rígido	
9	0.283	15.984	0.018	Rígido	
8	0.295	15.630	0.019	Rígido	
7	0.310	15.269	0.020	Rígido	
6	0.328	14.901	0.022	Rígido	
5	0.350	14.526	0.024	Rígido	
4	0.380	14.142	0.027	Rígido	
3	0.425	13.750	0.031	Rígido	
2	0.504	13.346	0.038	Rígido	
1	0.710	12.917	0.055	Rígido	

CAPÍTULO V. CONCLUSIONES

5.1 CONCLUSIONES

- 1.- Las principales variables que afectan la rigidez de las losas ante deformaciones en su plano producto de solicitaciones sísmicas están relacionadas con su propia geometría. Es así que la declaración que define el comportamiento como diafragma rígido de una losa está en función del espesor de la losa y de la relación entre el lado largo y el lado corto de su planta. La expresión gráfica de la formulación matemática de este documento que define el comportamiento de diafragma rígido es el mostrado en el gráfico 1, en donde se observa la demarcación entre la relación deformación desplazamiento que delimita, según el Código Hondureño de la Construcción, el comportamiento diafragmático de piso.
- 2. Las losas de hormigón reforzado en los edificios de dos entrepisos hasta ocho entrepisos se comportan como diafragmas rígidos en el caso que sus espesores sean al menos de 5 cm y para un relación máxima ancho largo en planta de uno a tres. En el caso de las losas de Edificios con un solo nivel de entrepiso, para lograr el efecto de diafragma rígido se requiere mayores espesores según la relación geométrica ancho largo en planta de la losa, es así que para una relación 1 a 3 se demanda un espesor de 86 cm; para la relación 1 a 2.5, un espesor de 55 cm; para la relación 1 a 2, un espesor de 30 cm; para la relación 1 a 1.5, un espesor de 15 cm y para la relación 1 a 1, un espesor de 9 cm.
- 3. Las losas de los Edificios de un nivel de entrepiso deben soportar solicitaciones de cargas sísmicas de mayor magnitud en relación a las losas de los edificios con más de dos niveles de entrepisos. Lo anterior debido a que la carga sísmica se distribuye verticalmente justo en el centro de masas de los niveles de entrepiso. Esta distribución conduce a que las primeras losas reciban mayor carga que las losas de pisos superiores, consecuentemente las deformaciones de piso resultan mayores en los niveles inferiores. Esta situación se vuelve más incidente, como ya se mencionó, en los

edificios de un solo entrepiso, en los que la losa debe de recibir y transmitir toda la carga sin distribución vertical de la misma.

- 4.- Los elementos verticales con alta rigidez, como lo son los muros de cortantes en los edificios, que se conectan a las losas, limitan en gran medida los desplazamientos de piso, actuando en este sentido, como elementos de anclaje rígidos. Sin embargo, el patrón de deformación en planta de la losa sometida a carga horizontal se acentúa con su valor máximo en el punto más alejado de estos elementos, ocasionando así, desplazamientos relativos o deformaciones que aumentan en proporción directa de la distancia que existe entre el extremo de losa ligado a elementos de alta rigidez vertical y el extremo de la losa más alejado a dichos elementos. Como la relación entre la deformación y el desplazamiento del piso define el comportamiento como diafragma rígido de la losa, resulta adecuado regular la ubicación de los muros de cortante de manera que la distancia del extremo de la losa más alejada al muro sea lo menos largo posible para evitar desplazamientos indeseables.
- 5.- Todos los modelos matemáticos analizados en este documento presentan resultados de desplazamientos relativos de piso y consecuentemente deformaciones en la losa, por lo que se puede aseverar que ninguna losa realmente se comporta como diafragmas infinitamente rígida como presuponen las bases de las teorías de análisis sísmico para edificios. Sin embargo, mediante el uso de espesores apropiados de losa se puede lograr la rigidez adecuada contra desplazamiento lateral que proporcione deformaciones despreciables en ella y permita poder asumir un comportamiento de diafragma de piso suficiente para recibir y transmitir las cargas de las solicitaciones horizontales en proporción de la rigidez lateral aportante por cada uno de los elementos verticales. En algunos casos, los espesores de losa relacionados a la rigidez en su plano resultan muy grandes en relación a lo necesario para su diseño por flexión debido a cargas verticales, por lo que resulta impráctico desde el punto de vista económico y constructivo su ejecución.

BIBLIOGRAFÍA

- 1. Dr. Joaquín E. Torre M. (2010). Seminario científico, material para la impartición de la Maestría en Estructuras. Tegucigalpa, Honduras.
- 2. Bazán E. y Meli R, (2001). Diseño sísmico de edificios. México, D.F.: Editorial Limusa.
- 3. Comisión técnica de Colegio de Ingenieros Civiles (2008). Código Hondureño de la construcción, Normas Técnicas (CHOC-08). Tegucigalpa, Honduras.
- 4. Dhiman Basu y Sudhir K. Jain (2004). Seismic analysis of asymmetric with flexible building floor diaphragms, Journal of structural engineering. U.S.A
- 5. ANIPPAC e Instituto de Ingeniería UNAM (2000). Estructuración con elementos prefabricados, Manual de diseño de estructuras prefabricadas y presforzadas. México.
- 6. Bruce Burr P.E. y Gargi Talati P.E. Diaphragm Desing.
- 7. Ángel San Bartolomé (2005). Estructuración Comentarios a la Norma E.070 "Albañilería".Perú.
- 8. Comisión técnica Colegio de ingenieros civiles (1997 y 2009). Diafragmas Horizontales, Muros de Corte y Requisitos Generales de Diseño de Elementos Sismoresistenes, Normas técnicas. Colombia
- 9. Miguel Rodríguez T. y Oscar A. López (2002). Modelo Matemático para Incorporar la Flexibilidad del Diafragma Constituido por Losas Compuestas en la Respuesta Sísmica de Edificios de Acero.
- 10. Piralla, Meli, (2009). Diseño estructural. México: Editorial Limusa.
- 11. Guillén, Luis. (2009): Diafragma de piso: Flexibilidad en el plano. Honduras.

ÍNDICE DE TABLAS

Tabla 1: Clasificación del tipo de diafragmas	14
Tabla 2: Límites del diafragma basados en las consideraciones de flexibilidad	16
Tabla 3: Relación ancho largo de losa	24
Tabla 4: Relación δ/∆ para diferentes espesores de losa en modelo de un nivel de	20
entrepiso con relación de 1 a 3 en su planta	32
Tabla 5: Relación δ/∆ para diferentes espesores de losa en modelo de un nivel de	24
entrepiso con relación de 1 a 2.5 en su planta	34
Tabla 6: Relación δ/∆ para diferentes espesores de losa en modelo de un nivel de	
entrepiso con relación de 1 a 2 en su planta	35
Tabla 7: Relación δ/∆ para diferentes espesores de losa en modelo de un nivel de	
entrepiso con relación de 1 a 1.5 en su planta	36
Tabla 8: Relación δ/∆ para diferentes espesores de losa en modelo de un nivel de	
entrepiso con relación de 1 a 1 en su planta.	37
Tabla 9: Relación δ/∆ para diferentes espesores de la primera losa de entrepiso en	
modelo de tres niveles con relación de 1 a 3 en su planta.	39
Tabla 10: Relación δ/Δ para diferentes espesores de la segunda losa de entrepiso e	n
modelo de tres niveles con relación de 1 a 3 en su planta	40
Tabla 11: Relación δ/Δ para diferentes espesores de la tercera losa de entrepiso en	
modelo de tres niveles con relación de 1 a 3 en su planta	40
modelo de tres niveres con relación de 1 a 3 en su planta	40

Tabla 12: Relación δ/Δ para diferentes espesores de la primera losa de entrepiso en
modelo de tres niveles con relación de 1 a 2.5 en su planta41
Tabla 13: Relación δ/Δ para diferentes espesores de la segunda losa de entrepiso en
modelo de tres niveles con relación de 1 a 2.5 en su planta41
Tabla 14: Relación δ/∆ para diferentes espesores de la tercera losa de entrepiso en
modelo de tres niveles con relación de 1 a 2.5 en su planta42
Tabla 15: Relación δ/Δ para diferentes espesores de la primera losa de entrepiso en
modelo de tres niveles con relación de 1 a 2 en su planta
Tabla 16: Relación δ/Δ para diferentes espesores de la segunda losa de entrepiso en
modelo de tres niveles con relación de 1 a 2 en su planta
Tabla 1.17: Relación δ/Δ para diferentes espesores de la tercera losa de entrepiso en
modelo de tres niveles con relación de 1 a 2 en su planta
Tabla 18: Relación δ/Δ para diferentes espesores de la primera losa de entrepiso en
modelo de tres niveles con relación de 1 a 1.5 en su planta44
Tabla 1.19: Relación δ/Δ para diferentes espesores de la segunda losa de entrepiso en
modelo de tres niveles con relación de 1 a 1.5 en su planta44
Tabla 20: Relación δ/Δ para diferentes espesores de la tercera losa de entrepiso en
modelo de tres niveles con relación de 1 a 1.5 en su planta45
Tabla 21: Relación δ/Δ para diferentes espesores de la primera losa de entrepiso en
modelo de tres niveles con relación de 1 a 1 en su planta45
Tabla 22: Relación δ/Δ para diferentes espesores de la segunda losa de entrepiso en
modelo de tres niveles con relación de 1 a 1 en su planta46

Tabla 23: Relación δ/Δ para diferentes espesores de la tercera losa de entrepiso en
modelo de tres niveles con relación de 1 a 1 en su planta
Tabla 24: Relación δ/Δ para diferentes espesores de la primera losa de entrepiso en
modelo de cinco niveles con relación de 1 a 2.5 en su planta
Tabla 25: Relación δ/Δ para diferentes espesores de la segunda losa de entrepiso en
modelo de cinco niveles con relación de 1 a 2.5 en su planta
Tabla 26: Relación δ/Δ para diferentes espesores de la tercera losa de entrepiso en
modelo de cinco niveles con relación de 1 a 2.5 en su planta
Tabla 27: Relación δ/Δ para diferentes espesores de la cuarta losa de entrepiso en
modelo de cinco niveles con relación de 1 a 2.5 en su planta
Tabla 28: Relación δ/Δ para diferentes espesores de la quinta losa de entrepiso en
modelo de cinco niveles con relación de 1 a 2.5 en su planta49
Tabla 29: Relación δ/Δ para diferentes espesores de la primera losa de entrepiso en
modelo de cinco niveles con relación de 1 a 2 en su planta50
Tabla 30: Relación δ/Δ para diferentes espesores de la segunda losa de entrepiso en
modelo de cinco niveles con relación de 1 a 2 en su planta50
Tabla 31: Relación δ/∆ para diferentes espesores de la tercera losa de entrepiso en
modelo de cinco niveles con relación de 1 a 2 en su planta51
Tabla 32: Relación δ/∆ para diferentes espesores de la cuarta losa de entrepiso en
modelo de cinco niveles con relación de 1 a 2 en su planta51
Tabla 33: Relación δ/∆ para diferentes espesores de la quinta losa de entrepiso en
modelo de cinco niveles con relación de 1 a 2 en su planta

Tabla 34: Relación δ/Δ para diferentes espesores de la primera losa de entrepiso en
modelo de cinco niveles con relación de 1 a 1.5 en su planta52
Tabla 35: Relación δ/Δ para diferentes espesores de la segunda losa de entrepiso en
modelo de cinco niveles con relación de 1 a 1.5 en su planta53
Tabla 36: Relación δ/∆ para diferentes espesores de la tercera losa de entrepiso en
modelo de cinco niveles con relación de 1 a 1.5 en su planta53
Tabla 37: Relación δ/Δ para diferentes espesores de la cuarta losa de entrepiso en
modelo de cinco niveles con relación de 1 a 1.5 en su planta54
Tabla 38: Relación δ/Δ para diferentes espesores de la quinta losa de entrepiso en
modelo de cinco niveles con relación de 1 a 1.5 en su planta54
Tabla 39: Relación δ/Δ para diferentes espesores de la primera losa de entrepiso en
modelo de cinco niveles con relación de 1 a 1 en su planta55
Tabla 40: Relación δ/Δ para diferentes espesores de la segunda losa de entrepiso en
modelo de cinco niveles con relación de 1 a 1 en su planta55
Tabla 41: Relación δ/Δ para diferentes espesores de la tercera losa de entrepiso en
modelo de cinco niveles con relación de 1 a 1 en su planta56
Tabla 42: Relación δ/Δ para diferentes espesores de la cuarta losa de entrepiso en
modelo de cinco niveles con relación de 1 a 1 en su planta56
Tabla 43: Relación δ/∆ para diferentes espesores de la quinta losa de entrepiso en
modelo de cinco niveles con relación de 1 a 1 en su planta57
Tabla 44: Relación δ/Δ para diferentes espesores de la primera losa de entrepiso en
modelo de seis niveles con relación de 1 a 3 en su planta58

Tabla 45: Relación δ/Δ para diferentes espesores de la segunda a losa de entrepiso	en
modelo de seis niveles con relación de 1 a 3 en su planta58	
Tabla 46: Relación δ/∆ para diferentes espesores de la tercera a losa de entrepiso e	n
modelo de seis niveles con relación de 1 a 3 en su planta	
Tabla 47: Relación δ/∆ para diferentes espesores de la cuarta a losa de entrepiso er	1
modelo de seis niveles con relación de 1 a 3 en su planta59	
Tabla 48: Relación δ/∆ para diferentes espesores de la quinta a losa de entrepiso en	1
modelo de seis niveles con relación de 1 a 3 en su planta60	
Tabla 49: Relación δ/∆ para diferentes espesores de la sexta a losa de entrepiso en	
modelo de seis niveles con relación de 1 a 3 en su planta60	
Tabla 50: Relación δ/∆ para diferentes espesores de la primera losa de entrepiso en	
modelo de nueve niveles con relación de 1 a 3 en su planta61	
Tabla 51: Relación δ/∆ para diferentes espesores de la segunda losa de entrepiso e	n
modelo de nueve niveles con relación de 1 a 3 en su planta62	
Tabla 52: Relación δ/∆ para diferentes espesores de la tercera losa de entrepiso en	
modelo de nueve niveles con relación de 1 a 3 en su planta62	
Tabla 53: Relación δ/∆ para diferentes espesores de la cuarta losa de entrepiso en	
modelo de nueve niveles con relación de 1 a 3 en su planta63	
Tabla 54: Relación δ/∆ para diferentes espesores de la quinta losa de entrepiso en	
modelo de nueve niveles con relación de 1 a 3 en su planta63	
Tabla 55: Relación δ/∆ para diferentes espesores de la sexta losa de entrepiso en	
modelo de nueve niveles con relación de 1 a 3 en su planta 64	

Tabla 56: Relación δ/Δ para diferentes espesores de la séptima losa de entrepiso en
modelo de nueve niveles con relación de 1 a 3 en su planta64
Tabla 57: Relación δ/∆ para diferentes espesores de la octava losa de entrepiso en
modelo de nueve niveles con relación de 1 a 3 en su planta65
Tabla 58: Relación δ/∆ para diferentes espesores de la novena losa de entrepiso en
modelo de nueve niveles con relación de 1 a 3 en su planta65

ÍNDICE DE FIGURAS

Figura 1: Elevación del edificio Arvin High School
Figura 2: Vistas de plantas del Edificio Arvin High School
Figura 3: Vistas de plantas del Edificio West Anchorage High School5
Figura 4: Vistas panorámica Edificio West Anchorage High School5
Figura 5: Daños ocasionados en Edificio West Anchorage High School6
Figura 6: Daños en columnas del edificio West Anchorage High School6
Figura 7: Dirección de esfuerzos en plantas irregular tipo L
Figura 8: Juntas verticales recomendado en edificio de forma tipo Z7
Figura 9: Vista general del complejo de apartamentos Northdrige Meadows8
Figura 10: Daños ocasionados en el complejo de apartamentos Northdrige Meadows9
Figura 11: Modelo de puntal y tirante para el análisis de fuerza de un diafragma13
Figura 12: Relación entre la deformación del diafragma y el desplazamiento relativo entre pisos
Figura 13: Deformaciones en un diafragma de piso rígido
Figura 14: Deformación para una pared en voladizo19
Figura 15: Ejemplo de cargas de diseño en las paredes de un Edificio20

Figura 16: Losa compuesta: a) Sección transversal; b) Sección transversal simplificada;
c) Modelo constituido por elementos finitos tipo "shell" (plano) y tipo "solid"
(volumétrico)23
Figura 17. Error relativo en el desplazamiento de piso en función del número de
elementos finitos planos y del espesor "e" de la losa
Figura 18. Paños de losas compuestas con diferente relación largo/ancho: a) b/a = 1,00; b) b/a = 1,50; c) b/a = 2,00; d) b/a = 3,0025
Figura 19. Modelo de un nivel, relación de losa 1 a 3: Modelo volumétrico de cada elemento estructural considerado
Figura 20. Modelo de un nivel, relación de losa 1 a 3: Ubicación, dirección y sentido de la carga horizontal utilizada
Figura 21. Vista en planta de la deformada de la losa de entrepiso con espesor de 9 cm y valores de desplazamientos para los nodos de las columnas
Figura 22. Modelo de un nivel, relación de losa 1 a 2.5: Modelo matemático estructural considerado
Figura 23: Espesores de losa para edificio de un nivel de entrepiso que relaciona la geometría en planta con las deformaciones y desplazamientos del piso