

FACULTAD DE POSTGRADO TRABAJO FINAL DE GRADUACION

APLICACIÓN DEL ANÁLISIS ESTÁTICO NO LINEAL (PUSHOVER) A UNA EDIFICACIÓN DE SIETE NIVELES CON SISTEMA DE MARCOS RÍGIDOS ESPECIALES.

SUSTENTADO POR: BRENDA MELANIA PALADA BARAHONA GABRIELA MARÍA COELLO MORALES

PREVIO INVESTIDURA AL TÍTULO DE

MÁSTER EN INGENIERÍA ESTRUCTURAL

SAN PEDRO SULA, CORTES, HONDURAS, C.A.

OCTUBRE 2021

UNIVERSIDAD TECNOLÓGICA CENTROAMERICANA UNITEC

FACULTAD DE POSTGRADO

AUTORIDADES UNIVERSITARIAS

RECTOR MARLON BREVÉ REYES

SECRETARIO GENERAL ROGER MARTÍNEZ MIRALDA

VICERRECTORA CADEMICA

DESIREE TEJADA CALVO

DIRECTORA UNITEC CAMPUS S.P.S MARIA ROXANA ESPINAL

DIRECTORA NACIONAL DE POSTGRADO ANA DEL CARMEN RETTALLY

APLICACIÓN DEL ANÁLISIS ESTÁTICO NO LINEAL (PUSHOVER) A UNA EDIFICACIÓN DE SIETE NIVELES CON SISTEMA DE MARCOS RÍGIDOS ESPECIALES.

TRABAJO PRESENTADO EN CUMPLIMIENTO DE LOS REQUISITOS EXIGIDOS PARA OPTAR AL TÍTULO DE

MÁSTER EN INGENIERÍA ESTRUCTURAL

ASESOR METODOLÓGICO

FREDY ANTONIO VIDES ROMERO

ASESOR TEMÁTICO

JOAQUIN EDGARDO TORRE

MIEMBROS DE LA TERNA: LUZ MARINA FUNES JULIO CESAR LOPEZ

DERECHOS DE AUTOR

©COPYRIGHT 2021

BRENDA MELANIA PALADA BARAHONA Gabriela María Coello Morales

TODOS LOS DERECHOS SON RESERVADOS

HOJA DE FIRMAS

Los abajo firmantes damos fe, en nuestra posición de miembros de Terna, Asesor y/o jefe Académico y en el marco de nuestras responsabilidades adquiridas, que el presente documento cumple con los lineamientos exigidos por la Facultad de Posgrado los requerimientos académicos que la Universidad dispone dentro de los procesos de graduación.

FREDY VIDES Asesor Unitec JOAQUIN E. TORRE Asesor Temático

COORDINADOR DE TERNA

MIEMBRO DE TERNA

MIEMBRO DE TERNA

JEFE ACADÉMICO DE LA CARRERA DE Posgrado, UNITEC

FACULTAD DE POSTGRADO

APLICACIÓN DEL ANÁLISIS ESTÁTICO NO LINEAL (PUSHOVER) A UNA EDIFICACIÓN DE SIETE NIVELES CON SISTEMA DE MARCOS RÍGIDOS ESPECIALES.

SUSTENTADO POR: BRENDA MELANIA PALADA BARAHONA GABRIELA MARÍA COELLO MORALES

RESUMEN EJECUTIVO

En el presente trabajo de tesis se aplicó el análisis estático no lineal pushover a un edificio de siete niveles de uso habitacional con tipología de marcos rígidos especiales, suelo tipo S1 y ubicado en San Pedro Sula. El propósito es determinar si el diseño de la edificación cumple con los requerimientos mínimos de desempeño indicados en los estándares FEMA-440 y ATC-40, utilizando como base del diseño el Código Hondureño de la Construcción. Para el desarrollo de las simulaciones se utilizó el software Etabs 2016 para el análisis estático y modal espectral, posteriormente se utilizó el software Etabs 2019 para el desarrollo de la curva pushover.

Para el edificio analizado se realizaron dos simulaciones, el modelo 1 consto de columnas de 0.50x0.50m, vigas de cimentación 0.50x0.30m y vigas de entrepiso de 0.60x0.30m y 0.70x0.35m con diafragma rígido de losa monolítica. A este modelo se le aplico el análisis estático y el análisis modal espectral dinámico. Una vez diseñados sus elementos se le aplico el análisis pushover en ambos sentidos y al revisar los puntos de desempeño, estos no cumplieron.

Para lograr que el edificio cumpliera con sus objetivos de desempeño se mejoró su configuración mecánica aumentando las secciones de las columnas del primer entrepiso a 0.65x0.65m, también se aumentó la sección de las vigas de cimentación a 0.50x0.60m. Con estos cambios se observó una menor formación de rotulas plásticas y un mejor comportamiento de la edificación cumpliendo con los objetivos de desempeño del ATC-40, FEMA-440 y la sectorización de la curva acorde a Visión 2000. El procedimiento realizado para pushover en Etabs, fue validado manualmente siguiendo los procedimientos indicados en el ATC-40 para la metodología de Coeficientes de Desplazamiento (DCM) y Método de Capacidad Espectral (CSM)

Finalmente se realizó un análisis exploratorio de resultados para definir cuál de las hipótesis establecidas se aceptaba, siendo en este caso la alterna donde confirmamos que si hay una relación directamente proporcional entre el desplazamiento en el dominio inelástico en el diafragma superior del edificio y los valores de ductilidad en el sismo de colapso. Posteriormente se concluyó en base a resultados.

Palabras clave: *análisis estático no lineal, cortante, desplazamiento, ductilidad, pushover, rotula plástica.*

GRADUATE SCHOOL APPLICATION OF NON-LINEAR STATIC ANALYSIS (PUSHOVER) TO A SEVEN STORY BUILDING WITH SWAY SPECIAL FRAMING TYPE

SUPPORTED BY: BRENDA MELANIA PALADA BARAHONA GABRIELA MARÍA COELLO MORALES

ABSTRACT

In the present thesis work, the non-linear static pushover analysis was applied to a residential seven story building with sway special type of frame, S1 soil and located in San Pedro Sula. The purpose is to determine if the building design meets the minimum performance requirements indicated in the FEMA-440 and ATC-40 standards, using the Honduran Construction Code as a basis for the design. The software used for static and dynamic analysis was Etabs 2016 and for the pushover curve was Etabs 2019.

For the analyzed building, two simulations were carried out, model 1 consisted of 0.50x0.50m columns, foundation beams 0.50x0.30m and story beams of 0.60x0.30m and 0.70x0.35m with a monolithic slab for rigid diaphragm. Static and dynamic analysis were applied to this model. Once its elements were designed, the pushover analysis was applied in both directions to check the performance points, with this simulation it turns out that the points were out of the limits and did not meet performance points.

To achieve that the building met its performance objectives, its mechanical configuration was improved by increasing the sections of the columns of the first story to 0.65x0.65m, the section of the foundation beams was also increased to 0.50x0.60m. With these changes, less formation of plastic hinges and better behavior of the building was observed, complying with the performance objectives of ATC-40, FEMA-440 and the sectorization of the curve according to Vision 2000. The procedure carried out for pushover in Etabs, was validated manually following the procedures indicated in ATC-40 for the Displacement Coefficients (DCM) and Spectral Capacity Method (CSM) methodology.

Finally, an exploratory analysis of the results was carried out to define which of the established hypotheses was accepted, in this case being the alternative where we confirmed that if there is a directly proportional relationship between the displacement in the inelastic domain in the upper diaphragm of the building and the values of ductility in the collapse earthquake. It was later concluded based on results.

KEYWORDS: nonlinear structural analysis, shear, displacement, ductility, pushover, plastic hinge.

DEDICATORIA

Dedico este logro principalmente a Dios, quien me ha dado la fortaleza para superar todos los obstáculos y poder seguir adelante, quien nunca me soltó de la mano cuando estuve a punto de caer y quien me ha dado la valentía, sabiduría y entusiasmo para llegar a donde estoy en este momento. Agradezco enormemente a mi papá Wilmer Palada por todos sus consejos y enseñanzas a lo largo de este camino, por esforzarse y velar por que no me hiciera falta nada y hacer de mí una profesional de bien, a mi mamá Melania Barahona quien ha sido mi motivo de inspiración dándome todo su amor y apoyo incondicional.

A Víctor Bendeck y por estar allí SIEMPRE para mí recordándome que todo esfuerzo tiene su recompensa y que por más fuerte que la tempestad sea, siempre Dios hará que llegue la calma.

Le Agradezco infinito a Gabriela Coello, mi compañera de tesis, por toda su paciencia, por tanta dedicación y por nunca dejarme aun cuando ni yo creía en mí. Definitivamente un ángel enviado por Dios a mi vida y una amistad inmerecida y de las más bonitas que una persona podría soñar, GRACIAS INFINITAS.

Brenda Palada

Dedico este logro en primer lugar a Dios, por acompañarme y estar siempre conmigo en todo momento, por no soltarme y darme la fuerza que necesitaba para culminar con este proyecto. Se lo dedico también a mis padres Leonel Coello y Karla Morales, quienes me han apoyado incondicionalmente en cada paso que doy, por darme consejos y palabras de aliento, por instruirme siempre a sacar lo mejor de mí y explotar mi potencial, por los abrazos de calma y alegría que necesite en los momentos donde ya no daba para más, por hacerme la mujer que soy hoy en día, quiero que siempre estén orgullosos de mí y este título es de ustedes.

A Eduardo, gracias por siempre estar, por la paciencia, por el creer en mí cuando yo ya no podía, por animarme y soportar mi estrés. Me acompañaste en este viaje de altos y bajos, siempre instándome a no rendirme y sacándome una sonrisa de la mejor manera.

A Brenda, porque en este proceso no solo fuimos compañeras de tesis, también fuimos amigas. Gracias por ser vos, por tu resiliencia, por tu buena vibra y por demostrarme que sin importar la adversidad siempre hay que seguir adelante, sacando fuerzas y dando lo mejor para tus seres queridos. Sos una hermana que Dios puso en mi camino y este proyecto es la muestra de que con dedicación todo se logra y que somos capaces de esto y mucho más.

Gabriela Coello

AGRADECIMIENTO

Primeramente, queremos agradecer a Dios ya que es nuestro apoyo diario y nos da la fortaleza para poder afrontar las dificultades que nos pone la vida. Así como también, por haber sido nuestro guía en este proyecto, ya que sin Él no hubiésemos podido alcanzar nuestra meta. Agradecemos a nuestros padres, hermanos y compañeros de estudio por el apoyo, palabras de motivación y aliento durante este proceso de formación.

Un agradecimiento y mención especial a nuestro asesor temático, el Dr. Joaquín Torre, por su paciencia y dedicación, por instarnos a estudiar y ser profesionales de bien, por acompañarnos en este proceso de tesis dedicándonos su tiempo y conocimiento.

Finalmente, agradecemos a la Universidad Tecnológica Centroamericana por darnos la oportunidad de formarnos como profesionales y contar con un equipo de docentes capaces de compartir sus conocimientos durante este proceso educativo.

ÍNDICE DE CONTENIDO

CAPÍ	TULO I. PLANTEAMIENTO DEL PROBLEMA	19
1.1 i	ntroducción	19
1.2.	Antecedentes	
1.3.	Definición del problema	
1.4.	Objetivos	21
1.5.	Justificación	
CAPÍ	TULO II. MARCO TEÓRICO	23
2.1 a	nálisis de la situación actual	
2.2 c	conceptualización	
2.3 t	eorías de sustento	
2.4 r	netodologías aplicadas	
2.5 s	ectorización puntos de desempeño visión 2011	
CAPÍ	TULO III. METOLODOLOGÍA	31
3.1.	Enfoque	
3.2.	Operacionalización de las variables	
3.3.	Métodos	33
3.4.	Unidad de análisis y respuesta	
CAPÍ	TULO IV. ANÁLISIS Y RESULTADOS	
4.1.	Descripcion del edificio	
4.2.	Consideraciones estructurales	
4.3.	Calculo de cargas	

	4.4.	Combinaciones de carga	
	4.5.	Predimensionamiento de elementos estructurales	
	4.6.	Analisis general del edificio	
	4.7	aplicación de analisis pushover primera iteracion modelo 1	53
	4.8	analisis pushover segunda iteracion modelo 2	
CAPÍTULO V. CONCLUSIONES Y RECOMENDACIONES146			
	5.1 co	onclusiones	
	5.2 re	ecomendaciones	
CAPÍTULO VI. APLICABILIDAD148			
	REFER	ENCIA BIBLIOGRAFÍA	153
	GLOSA	ARIO	155
	ANEX	DS	

ÍNDICE DE FIGURAS

Figura 1. Propuesta arquitectónica	. 37
Figura 2. Espectro de Respuesta. Fuente: (Propia,2021)	. 42
Figura 3. Modelo de Edificio de Estudio	. 46
Figura 4. Planta de Entrepiso del 1 al 4	. 54
Figura 5. Planta de Entrepiso del 5 al 7	. 55
Figura 6.Detalle de Vigas de 1 a 5	. 55
Figura 7. Detalle de Vigas de 6 a 10	. 56
Figura 8. Detalles de Vigas y Columnas	. 56
Figura 9. Definición de rotula en columna	. 56
Figura 10. Diagrama momento-rotación en columna	. 57
Figura 11. Definición de rotula en vigas	. 57
Figura 12. Diagrama momento-rotación en viga	. 57
Figura 13. Curva de desempeño en sentido X.	. 58
Figura 14. Curva de desempeño sentido Y.	. 59
Figura 15. Formación de rotulas plásticas	. 59
Figura 16. Formación de rotulas plásticas	. 60
Figura 17. Desplazamiento 0.0348m, cortante 117028.69 kg.	. 60
Figura 18. Desplazamiento 0.072424m, cortante 236170.3 kg.	. 61
Figura 19. Desplazamiento 0.144305m, cortante 425930.75kg.	. 61
Figura 20. Desplazamiento 0.217467 m, cortante 546930.16 kg.	. 62
Figura 21. Desplazamiento 0.223373m, cortante 555959.8 kg.	. 62
Figura 22. Curva de desempeño Estructural. Fuente: (Propia,2021)	. 63
Figura 23. Sectorización para método coeficiente de desplazamiento	. 63
Figura 24. Masas por nivel	. 64
Figura 25. Formas modales normalizadas	. 65
Figura 26. Modos de vibración y porcentaje de masa participativa	. 65
Figura 27. Propiedades del primer modo de vibración.	. 66
Figura 28. Propiedades del segundo modo de vibración	. 67
Figura 29. Propiedades del tercer modo de vibración	. 67
Figura 30. Cortante vs. Desplazamiento.	. 68
Figura 31. Puntos para curva de capacidad	. 68
Figura 32. Puntos de desempeño de la estructura.	. 69
Figura 33. Aceleraciones y desplazamientos espectrales en el punto de desempeño	. 71
Figura 34. Curva de Capacidad del Desempeño Estructural de la edificación.)	. 71
Figura 35. Sectorización para método coeficiente de desplazamiento	. 72
Figura 36. Desplazamiento 0.036067m, cortante 131707.58 kg.	. 73
Figura 37. Desplazamiento 0.074927m, cortante 247297.18kg	. 73
Figura 38. Desplazamiento 0.148746m, cortante 404131.65 kg.	. 74
Figura 39. Curva de Capacidad del desempeño de la estructura	. 74
Figura 40. Sectorización para método coeficiente de desplazamiento	. 75

Figura 41.Formas modales normalizadas en Y.	75
Figura 42. Modos de vibración y porcentaje de masa participativa	
Figura 43. Propiedades del primer modo de vibración.	77
Figura 44. Propiedades del segundo modo de vibración.	77
Figura 45. Propiedades del tercer modo de vibración	
Figura 46. Cortante vs. Desplazamiento.	
Figura 47. Puntos para curva de capacidad	79
Figura 48. Puntos de desempeño de la estructura.	80
Figura 49. Aceleraciones y desplazamientos espectrales en el punto de desempeño	81
Figura 50. Curva de Capacidad de desempeño estructural.	82
Figura 51. Sectorización para método coeficiente de desplazamiento.	82
Figura 52. Desplazamiento 0.036136m, cortante 121367.66 kg.	83
Figura 53. Desplazamiento 0.087068m, cortante 276581.03kg	84
Figura 54. Desplazamiento 0.172783m, cortante 490269.35 kg.	84
Figura 55.Curva de desempeño estructural	85
Figura 56. Punto de desempeño encontrado en espectro de diseño ADRS	87
Figura 57. Puntos de desempeño encontramos método CSM	87
Figura 58. Curva de Sectorización para el desempeño de la estructura	88
Figura 59. Desplazamiento 0.038744m, cortante 139913.85 kg.	89
Figura 60. Desplazamiento 0.091311m, cortante 284009.5 kg	89
Figura 61. Punto de desempeño.	91
Figura 62. Sectorización de Puntos de Desempeño.	92
Figura 63.Planta de modelo refinado.	95
Figura 64. Planta de modelo Refinado	96
Figura 65. Planta de Modelo 2, entrepiso 1	96
Figura 66. Planta de Modelo 2, entrepiso 2 al 4	97
Figura 67. Planta de modelo 2, entrepiso del 5 al 7	97
Figura 68.Secciones de columnas refinadas, modelo 2	98
Figura 69. Curva de desempeño en sentido X.	104
Figura 70. Curva de desempeño sentido Y.	105
Figura 71. Desplazamiento 0.030944m, cortante 129960.13 kg.	106
Figura 72. Desplazamiento 0.06488m, cortante 267000.37 kg	106
Figura 73. Desplazamiento 0.129142m, cortante 484537.5 kg	107
Figura 74. Desplazamiento 0.193368m, cortante 678351.87 kg	107
Figura 75. Desplazamiento 0.27982m, cortante 835824.30 kg	108
Figura 76. Puntos de desempeño en curva.	108
Figura 77. Sectorización de puntos.	108
Figura 78. Modos de vibración y porcentaje de masa participativa	110
Figura 79. Cortante vs. Desplazamiento	112
Figura 80. Curva de Capacidad de la estructura.	116
Figura 81. Sectorización de puntos.	116

Figura 82. Desplazamiento 0.031927, cortante 145967.85 kg	117
Figura 83. Desplazamiento 0.066794m, cortante 278395.02 kg	117
Figura 84. Desplazamiento 0.133265m, cortante 455115.78 kg	118
Figura 85. Desplazamiento 0.203399m, cortante 621132.56 kg	118
Figura 86. Desplazamiento 0.339453m, cortante 842151.08 kg.	119
Figura 87. Sectorización de puntos de desempeño en curva	119
Figura 88. Sectorización de puntos	120
Figura 89. Modos de vibración y porcentaje de masa participativa	121
Figura 90. Cortante vs. Desplazamiento	123
Figura 91. Sectorización de puntos de desempeño en curva	126
Figura 92.Sectorización de puntos	126
Figura 93. Desplazamiento 0.031462m, cortante 132102.24 kg.	127
Figura 94. Desplazamiento 0.068993m, cortante 283113.11 kg	128
Figura 95. Desplazamiento 0.150738m, cortante 552237.87 kg	128
Figura 96. Desplazamiento 0.215141m, cortante 718842.65 kg	129
Figura 97. Desplazamiento 0.279696m, cortante 835575.23 kg	129
Figura 98. Sectorización de puntos de desempeño en curva	130
Figura 99. Punto de desempeño	132
Figura 100. Sectorización de puntos de desempeño en curva	133
Figura 101. Desplazamiento 0.034647, cortante 156297.53kg	134
Figura 102. Desplazamiento 0.083822m, cortante 326010.26 kg	135
Figura 103. Desplazamiento 0.204957m, cortante 624614.79 kg	135
Figura 104. Desplazamiento 0.294673m, cortante 772763.25 kg	136
Figura 105. Desplazamiento 0.340606m, cortante 844006.15 kg	136
Figura 106. Puntos de desempeño sectorizados en curva	137
Figura 107. Punto de desempeño en espectro de diseño ADRS	139
Figura 108. Puntos de desempeño sectorizados en curva	140
Figura 109. Formación de rotulas plásticas para pushover X.	156
Figura 110. Formación de rotulas plásticas en Y.	156
Figura 111. Formación de rotulas plásticas en X	157
Figura 112. Formación de rotulas plásticas en Y	157

ÍNDICE DE TABLAS

Tabla 1. Operacionalización del Proyecto.	. 32
Tabla 2. Tabla de Periodo por Aceleración	. 41
Tabla 3. Predimensionamiento de Vigas	. 44
Tabla 4. Predimensionamiento de Columnas	. 44
Tabla 5. Espesor de Losa	. 45
Tabla 6.Sismo Estático	. 47
Tabla 7. Modos de Vibración de la Estructura	. 47
Tabla 8. Cortantes Dinámicos para sentido en X.	. 48
Tabla 9. Cortantes Dinámicos para sentido en Y	. 48
Tabla 10.Escalamiento de Cortantes	. 49
Tabla 11.Cortantes Escalados para sentido X	. 49
Tabla 12.Cortantes Escalados para sentido Y	. 50
Tabla 13. Revisión de Irregularidad Torsional.	. 50
Tabla 14. Revisión de Derivas en EQXEP	. 50
Tabla 15. Revisión de Derivas en EQXEN	. 51
Tabla 16. Revisión de Derivas en EQYEP.	. 51
Tabla 17. Revisión de Derivas en EQYEP	. 51
Tabla 18. Discontinuidad del Diagrama.	. 52
Tabla 19. Conversión de la curva de capacidad a formato AD	. 86
Tabla 20. Tabla comparativa de valores.	. 88
Tabla 21. Conversión de la curva de capacidad a formato AD	. 90
Tabla 22. Puntos de desempeño encontramos método CSM	. 92
Tabla 23. Tabla comparativa de valores.	. 92
Tabla 24. Tabla comparativa entre DCM vs CSM en sentido X para sismo frecuente y	de
servicio	. 93
Tabla 25. Tabla comparativa entre DCM vs CSM en sentido X para sismo de diseño, extrem	io y
colapso	. 93
Tabla 26. Tabla comparativa entre DCM vs CSM en sentido Y para sismo frecuente y	de
servicio	. 93
Tabla 27. Tabla comparativa entre DCM vs CSM en sentido Y para sismo de deseño, extrem	io y
colapso	. 94
Tabla 28. Formación de rotulas plásticas en X.	105
Tabla 29. Formación de rotulas plásticas en Y.	105
Tabla 30. Masas por nivel	109
Tabla 31. Formas modales normalizadas.	110
Tabla 32. Propiedades del primer modo de vibración	111
Tabla 33. Propiedades del segundo modo de vibración	111
Tabla 34. Propiedades del tercer modo de vibración.	112

Tabla 35. Puntos para curva de capacidad.	113
Tabla 36. Puntos de desempeño de la estructura.	114
Tabla 37. Aceleraciones y desplazamientos espectrales en el punto de desempeño	115
Tabla 38. Formas modales normalizadas en Y.	120
Tabla 39. Propiedades del primer modo de vibración.	121
Tabla 40. Propiedades del segundo modo de vibración	122
Tabla 41.Propiedades del tercer modo de vibración	122
Tabla 42. Puntos para curva de capacidad.	123
Tabla 43. Puntos de desempeño de la estructura.	124
Tabla 44. Aceleraciones y desplazamientos espectrales en el punto de desempeño	125
Tabla 45. Conversión de la curva de capacidad a formato AD	131
Tabla 46. Puntos de desempeño encontramos método CSM	133
Tabla 47. Comparación entre método Manual VS. Etabs	134
Tabla 48. Comparación entre método Manual VS. Etabs	134
Tabla 49. Puntos de desempeño encontramos método CSM	139
Tabla 50. Tabla comparativa con valores manuales vs Etabs	140
Tabla 51. Tabla comparativa con valores manuales vs Etabs	141
Tabla 52. Tabla comparativa para métodos DCM VS. CSM en sentido X	141
Tabla 53. Tabla comparativa para métodos DCM VS. CSM en sentido X	141
Tabla 54. Tabla comparativa para métodos DCM VS. CSM en sentido Y	141
Tabla 55. Tabla comparativa para métodos DCM VS. CSM en sentido Y	142
Tabla 56. Analisis Exploratorio para sismo frecuente, sentido en X	143
Tabla 57. Análisis Exploratorio para sismo Servicio, sentido en X	143
Tabla 58. Análisis Exploratorio para sismo Diseño, sentido en X	144
Tabla 59. Análisis Exploratorio para sismo Extremo, sentido en X	144
Tabla 60. Análisis Exploratorio para sismo Colapso, sentido en X	144
Tabla 61. Análisis Exploratorio para sismo Frecuente, sentido en Y	144
Tabla 62. Análisis Exploratorio para sismo Servicio, sentido en Y	145
Tabla 63. Análisis Exploratorio para sismo Diseño, sentido en Y.	145
Tabla 64. Análisis Exploratorio para sismo Extremo, sentido en Y	145
Tabla 65. Análisis Exploratorio para sismo Colapso, sentido en Y	145
Tabla 66. Resumen Especifico de Capitulo I.	150
Tabla 67. Resumen Especifico de Capitulo II	151
Tabla 68. Resumen Especifico de Capitulo III.	151
Tabla 69. Resumen Especifico de Capitulo V.	152
Tabla 70. Resumen Especifico de Capitulo IV.	152

CAPÍTULO I. PLANTEAMIENTO DEL PROBLEMA

1 Introducción

El análisis estático no lineal (pushover) es una metodología que se ha venido discutiendo a lo largo de los años para comprender el nivel de daño estructural que presentará una edificación luego de haber sido sometida a un evento sísmico. Honduras es un país con una amenaza sísmica moderada debido a su ubicación geográfica, el terremoto ocurrido el 28 de mayo de 2009 dejo en evidencia la necesidad de diseñar estructuras capaces de soportar excitaciones sísmicas presentando un nivel de daño aceptable. En el presente documento de tesis se realizará el análisis y diseño estructural de un edificio de 7 niveles de uso habitacional con detallado de marcos rígidos especiales. A esta edificación se le hará un análisis estático no lineal (pushover) para determinar su comportamiento estructural y la formación de rotulas plásticas. En el documento se encontrará el desarrollo del proyecto, iniciando con el primer capítulo por medio del planteamiento del problema, definición de preguntas de investigación y objetivos, el capítulo dos comprenderá la conceptualización y recopilación bibliográfica a utilizar en este proyecto, en el capítulo tres se mostrará detalladamente la metodología utilizada. Los análisis y resultados de las simulaciones realizadas a lo largo de la investigación se tabularán en el capítulo cuatro, se continuará con el capítulo cinco que comprenderá las conclusiones y recomendaciones obtenidas a partir de los resultados de la investigación y se finaliza con el capítulo seis donde se menciona la aplicabilidad de la investigación en el rubro ingenieril.

La contribución de esta investigación consiste en demostrar la necesidad de realizar un análisis por desempeño a las estructuras, para así detectar los puntos donde se genera mayor cantidad de rotulas plásticas, reforzar dichos elementos y asegurar que la edificación cumpla con el nivel de desempeño establecido por el FEMA-440 y ATC-40.

2. Antecedentes

La amenaza sísmica en Honduras fue estudiada por primera vez por Kiremidjian et al. (1979) y al igual que en estudios posteriores, se encontró que la amenaza más alta se encuentra en el suroeste del país, alcanzándose valores de hasta 0.55 g en Choluteca para 475 años de periodo de retorno. En el año 2000 se realizaron dos estudios independientes de la amenaza sísmica a nivel nacional: uno por Cáceres y Kulhanek (2000) y otro por Cruz et al. (2000), donde se obtuvieron, para una probabilidad de excedencia del 10% en 50 años, valores de PGA mayores a 0.6 y 1.0 g para la zona más próxima a la fosa Centroamericana, mientras que para el mismo sitio e igual periodo de retorno, el segundo estudio obtuvo valores de 0.4 g y además proporcionó un espectro de amenaza probabilista uniforme.

Reyes (2010) afirma: "Los estudios realizados demostraron que Honduras, a diferencia de sus países vecinos, presenta una amenaza sísmica moderada, aun así, las estructuras siempre deberán diseñarse para que sean capaces de resistir eventos sísmicos de mediana a gran intensidad"(p.174).

De ahí nace la necesidad y la importancia de que en los códigos o normas de construcción se establezcan lineamientos para generar diseños estructurales con un desempeño sísmico aceptable, donde la edificación supere el daño provocado y garantice salvar la mayor cantidad de vidas posibles.

3. Definición del Problema

Enunciado del Problema

"El Código Hondureño de la Construcción en su apartado de diseño sísmico solo contempla el análisis estático y el análisis dinámico, pero no contiene una metodología de análisis que confirme que siguiendo la norma se cumple con los objetivos de desempeño establecidos en los estándares ATC-40, FEMA-440 Y ASCE 41-13".

Formulación del Problema

¿Qué metodología se debería aplicar en el Código Hondureño de la construcción para confirmar que el detallado de los marcos rígidos especiales sea el adecuado frente a los objetivos de desempeño a los estándares ATC-40, FEMA-440 Y ASCE 41-13?

Preguntas de Investigación

Las interrogantes por responder a lo largo de la presente investigación son las siguientes:

- 1) ¿Qué ventajas proporcionaría el aplicar el análisis estático no lineal (pushover) a la seguridad estructural de una edificación?
- ¿Cumple el detallado los marcos rígidos especiales del CHOC-08 con los objetivos de desempeño establecidos en los estándares ATC-40, FEMA-440 Y ASCE 41-13?
- 4. Objetivos

Los objetivos definidos procedentes para la realización de un análisis estático no lineal son los siguientes:

Objetivo General

El primordial objetivo del proyecto es:

"Diseñar un edificio de ocho niveles utilizando el análisis estático y análisis modal espectral del CHOC-08 y aplicar la metodología del análisis no lineal (pushover) para evaluar el desempeño de la estructura."

Objetivos Específicos

Antes de la definición del objetivo general, surgieron preguntas de investigación, a partir de las cuales se definieron los siguientes objetivos:

- Definir las ventajas que proporcionaría el implementar el análisis estático no lineal (pushover) a la seguridad estructural de una edificación.
- Confirmar que el detallado de los marcos rígidos especiales del CHOC-08, cumpla con los requerimientos mínimos de desempeño establecidos en los estándares ATC-40, FEMA-440 Y ASCE 41-13.

5. Justificación.

Actualmente, En la nueva filosofía del diseño sismo-resistente es fundamental verificar el desempeño sísmico ante varias acciones, a las que probablemente estarán sujetas las estructuras. El hecho es que, si la resistencia del sistema estructural a fuerzas laterales se desarrolla a un nivel de respuesta sísmica menor que la correspondiente al sismo de diseño, aparecerán deformaciones inelásticas, con plastificación de algunas secciones. Para ello hacer un buen diseño en el que se verifique el desempeño sísmico es necesario por lo que, el análisis estático no lineal (pushover) es la mejor opción para dar solución a tal problema, por eso en este trabajo se dará los conocimientos necesarios para poder utilizar este método tan necesario hoy en día.

CAPÍTULO II. MARCO TEÓRICO

2.1 Análisis de la Situación Actual

El diseño de estructuras basado en la resistencia sísmica propuesto en el Código Hondureño de la Construcción tiene como objetivos principales que las estructuras sean capaces de resistir sismos de baja intensidad sin sufrir daños estructurales significativos, sismos moderados con daños reparables y sismos de mayor intensidad sin que se produzca el colapso. Siguiendo esta filosofía de diseño, el desempeño de las estructuras, en términos de potencial de daño, no ha sido cuantificado, debido a que generalmente sólo se considera un nivel del movimiento del terreno para el cual, la edificación no debería colapsar. En tal sentido, "es importante reconocer que la seguridad ante el colapso, debido a grandes sismos, no implica necesariamente un comportamiento aceptable de la edificación durante sismos de pequeña y moderada intensidad, como ha podido comprobarse durante sismos recientes" (Aguiar, 2021, p.78).

"La metodología de Análisis Estático No Lineal (pushover), fue desarrollada por los investigadores A. K. Chopra y R. K. permite estimar la demanda sísmica y verificar el desempeño de una estructura para sismos severos" (Goel, 2001, p.89). Se basa en un análisis estático no-lineal, de tipo "Push Over" o de empujón, con distribuciones de fuerzas laterales equivalentes invariantes en la altura, que incluye las contribuciones de los modos de vibración del comportamiento elástico y emplea de manera aproximada la teoría clásica de la dinámica de estructuras. A partir de esto, se determina la capacidad resistente de la estructura e información del comportamiento no-lineal, como, por ejemplo, la secuencia en que las secciones van ingresando a la etapa no-lineal, los desplazamientos laterales en cada incremento de carga, desplazamientos relativos de entrepiso, ductilidades, fallas de elementos por flexión y corte, esfuerzos, etc.

De un análisis tipo pushover realizado al sistema de varios grados de libertad (MDF), se obtienen las curvas del desplazamiento de techo vs corte basal hasta un desplazamiento lateral máximo esperado, usando distribuciones de fuerzas laterales proporcionales a las formas modales, y con el supuesto de que éstas no cambian después que la estructura entra en la etapa no lineal, para una cantidad suficientes de modos. "Cada una de estas curvas por modo, es idealizada como una relación bilineal de fuerzadeformación y transformada a un sistema inelástico equivalente de un grado de libertad" (Reyes,2010, p.213).

Con estos desplazamientos máximos por modos, se obtiene desde la base de datos del análisis de pushover, cualquier respuesta de interés a nivel modal y, finalmente, la demanda sísmica total se obtiene combinando las respuestas por modo, de acuerdo con la regla de combinación, por ejemplo, la raíz cuadrada de la suma de los cuadrados (SRSS). Obteniendo así datos reales del desempeño de la edificación.

2.2 Conceptualización

El análisis pushover está basado en los resultados obtenidos de investigaciones en las que se sometían a los elementos estructurales a cargas laterales para observar la formación secuencial de rótulas plásticas. Dicho análisis con el tiempo se ha empleado en estructuras que necesitan reforzarse, debido a que son vulnerables a acciones de eventos naturales, tales como sismos y vientos.

La aplicación del Análisis Estático No Lineal permite determinar la capacidad resistente de la estructura y compararla con la demanda posible ante un evento natural. La demanda está relacionada con la amenaza sísmica y del sitio de ubicación de la estructura, así como de las características globales, mientras que la capacidad de la estructura depende de la rigidez, la resistencia y la deformación de cada uno de sus miembros.

Por lo que cuando se procede a realizar un Análisis Estático No Lineal es necesario recabar información específica sobre la estructura:

- Características de los materiales.
- Geometría de las secciones de los elementos estructurales y la disposición del acero de refuerzo, tanto longitudinal como transversal y el detallado de cada uno de ellos.
- ✤ Las acciones gravitacionales (cargas permanentes y variables) que actúan sobre ella.
- ✤ La resistencia de las vigas y las columnas.
- Identificar posible ubicación donde podrían formarse las rótulas plásticas en los miembros estructurales.

- Las propiedades de esfuerzo-deformación de las rótulas plásticas en función de su cantidad de acero de refuerzo longitudinal y transversal, así como su detallado y las solicitaciones que actúan.
- Cargas laterales aplicadas en el centro de masa de la estructura. El valor de estas cargas por pisos debe tener la misma forma de cargas proveniente de la aplicación del primer modo de vibración.

El Análisis Estático No Lineal consiste en que, al actuar primero las cargas gravitacionales, en la estructura se producen las primeras deformaciones, luego pasan a actuar las cargas laterales que se incrementan de forma secuencial, en una dirección hasta que se forma la primera rótula plástica y se presenta una redistribución de rigidez de la estructura, y así se realiza un proceso iterativo hasta que la estructura falla totalmente. La denominación "Pushover" se traduce como "Hacer Caer", lo cual se entiende como el proceso que lleva a la estructura al colapso y determina las condiciones en las que eventualmente podría ocurrir.

Una de las metodologías del análisis no lineal utilizada en el proyecto es el método de capacidadespectro ayuda a la determinación del punto de desempeño de una estructura y requiere la determinación de 3 elementos primarios que son: capacidad, demanda y desempeño.

Según (Esteba Apaza, 2017):

Capacidad: La capacidad es una representación de la habilidad de una estructura para resistir la demanda sísmica. La capacidad global de una estructura depende de la resistencia y capacidad de deformación de sus componentes individuales que la componen. Con el fin de determinar la capacidad de una estructura más allá de su límite elástico, se requiere de un análisis no lineal, el cual puede ser desarrollado de forma estática o dinámica.

Demanda (desplazamiento): La demanda es una representación del movimiento telúrico. En los métodos de análisis lineales tradicionales se utilizan las fuerzas laterales para representar una condición de diseño, sin embargo, para los métodos no lineales se utiliza un conjunto de desplazamientos laterales como condición de diseño, ya que resulta más fácil y directo.

Para una estructura dada y una solicitación sísmica, la demanda de desplazamiento es una estimación de la respuesta máxima esperada del edificio durante el movimiento del suelo.

Desempeño: El desempeño de una estructura depende de la manera en que su capacidad maneje la demanda sísmica. En otras palabras, la estructura debe ser capaz de resistir la demanda del terremoto, tal que el comportamiento de la estructura sea compatible con los objetivos de desempeño. Una vez que se ha determinado la curva de capacidad y se ha definido el desplazamiento de demanda, se puede evaluar el desempeño de la estructura. A través del desempeño se podrá verifica que los componentes estructurales y no estructurales no estén dañados más allá de los límites aceptables de los objetivos de desempeño (p.161).

2.2.1 Niveles de Desempeño de una Estructura

El desempeño se cuantifica en términos de la cantidad de daño en un edificio afectado por un movimiento sísmico y el impacto que tienen estos daños en las actividades posteriores al evento. A continuación, se presenta la descripción detallada de los niveles de desempeño establecidos por el comité Visión 2000, los cuales se aplican a nuestro proyecto.

Joaquín Torre (2021) afirma:

✤ Nivel Operacional (OL):

Para este nivel de desempeño se espera que no se produzcan daños permanentes. La estructura conserva su rigidez y resistencia original. Se pueden observar agrietamientos en paredes de divisiones y cielos, así como también, en algunos componentes de la estructura.

Nivel de ocupación inmediata (IO):

En una estructura con este nivel de desempeño se espera que no se produzcan desplazamientos laterales sostenidos y que la estructura conserve su resistencia y rigidez original. Se pueden observar agrietamiento en paredes divisorias y en miembros estructurales. Los ascensores pueden seguir operando y la protección contra fuego sigue operativa.

✤ Nivel de Supervivencia (LS):

Una estructura con este nivel de desempeño tiene alguna resistencia y rigidez residual.

Las paredes de carga no presentan fallas fuera del plano, algunos desplazamientos laterales pueden ser observados con fallas en paredes divisorias y los costos de reparación del edificio están más allá de su viabilidad económica. Los sistemas mecánicos presentan daños.

Nivel de Prevención del Colapso (CP):

Las estructuras con este nivel de desempeño se espera que tengan una pequeña resistencia y rigidez residual. Los edificios presentan grandes desplazamientos laterales sostenidos, fallas en las particiones y extensivo daño en los elementos no estructurales. (p.16).

2.3 Teorías de Sustento

Este estudio está enfocado en una investigación de ingeniería sismo-resistente por lo que toda estructura que se construya debe brindar seguridad a la sociedad.

En el caso particular de la ingeniería sismo-resistente, la filosofía del Análisis No Lineal consiste en:

- I. Prevenir daños en terremotos menores de ocurrencia frecuente durante la vida útil de la estructura;
- II. Controlar daños en elementos estructurales y no estructurales durante terremotos moderados;
- III. Evitar el colapso y daños muy significativos para proteger la vida de las personas en terremotos muy severos, pero de relativamente muy baja frecuencia de ocurrencia. Con los códigos vigentes, por ejemplo, FEMA - 440, ATC – 40 y ACI 318-05, el análisis y diseño se realiza para satisfacer explícitamente sólo el tercer objetivo, debido a que los espectros de diseño corresponden a eventos sísmicos severos de ocurrencia diferente.

Para poder comprender el ámbito de aplicación de documentos técnicos internacionales, como lo es el caso de FEMA 356 y ATC 40, y poderlos aplicar de manera correcta en el campo de la

ingeniería sísmica de nuestro país, es necesario conocer de manera general, qué son estos documentos y Cómo deben ser utilizados. FEMA 356 es un documento técnico, generado por la Agencia Federal de Manejo de Emergencias (FEMA) y la Sociedad Americana de Ingenieros Civiles (ASCE), orientado a la rehabilitación sísmica de edificios de concreto armado, donde se especifican todas las disposiciones aplicables en la rehabilitación de edificaciones para mejorar su rendimiento sísmico. Este documento contiene procedimientos aplicables única y exclusivamente a la rehabilitación sísmica de edificaciones existentes. Puede ser utilizado como una herramienta de evaluación que comprueba el cumplimiento de un objetivo de desempeño seleccionado, se puede aplicar en general a la rehabilitación sísmica de todas las edificaciones independientemente de su importancia, ocupación, estado histórico u otras clasificaciones de uso (Moreno González, 2006).

La propuesta tanto del ATC-40 como de FEMA-356 clasifica los niveles de desempeño separadamente en niveles de desempeño para los componentes estructurales y los no estructurales de tal forma que la combinación de estos proporciona el nivel de desempeño de la edificación. Niveles de desempeño estructural Representan posibles daños estructurales (Llano Iza, 2015).

Entre ellos se encuentran cuatro estados para realizar la curva de desempeño de la edificación: sismo frecuente calculado utilizando 0.25 veces el sismo de diseño, el ocasional calculado 0.50 veces el sismo de diseño, y el muy raro calculado 1.5 veces el sismo de diseño.

2.4 Metodologías Aplicadas

Existen dos procedimientos de análisis estático no lineal: El llamado Método de los Coeficientes de Desplazamiento (DCM) documentado en FEMA-356 y el Método de Capacidad Espectral (CSM) documentado en ATC 40 (Applied Technology Council). Ambos métodos dependen de la variación de los desplazamientos laterales obtenidos por un análisis estático no lineal bajo cargas gravitacionales y una carga lateral idealizada representando la acción sísmica.

Método de Capacidad Espectral (CSM): Es un procedimiento de análisis no lineal que provee una representación gráfica del desempeño sísmico esperado de la estructura por la intersección del espectro de capacidad con el espectro de respuesta. Ese punto de intersección es llamado "Punto

de desempeño" y la coordenada de desplazamiento en ese punto es la demanda de desplazamiento estimada en la estructura para un nivel de riesgo sísmico especificado (ATC 40,2012).

Método de Coeficientes de Desplazamiento (DCM): Es un procedimiento de análisis no lineal que provee un proceso numérico para estimar la demanda de desplazamiento en la estructura por el uso de una representación bilineal de la curva de capacidad y una serie de factores de modificación o coeficientes para el cálculo del desplazamiento objetivo. El punto en la curva de capacidad del desplazamiento objetivo es el equivalente al punto de desempeño del método de capacidad espectral (FEMA 356,2011).

Curva de capacidad: La relación entre la fuerza cortante en la base y el desplazamiento en el nivel superior de la estructura se representa en la curva de capacidad para cada incremento. Esta curva generalmente se construye para representar la respuesta en el primer modo de vibración de la estructura basado en la suposición que ese modo es el que predomina en la respuesta. Esta suposición es válida para estructuras con períodos fundamentales menores que 1 segundo, para estructuras con períodos mayores que 1 segundo (edificios flexibles) el análisis debe de considerar los efectos de los modos más altos de vibración. (Joaquín Torre, 2021, p.19)

Es importante tomar en consideración que para poder construir la curva de capacidad es necesario conocer la geometría de la estructura; "el detallado del acero de refuerzo de cada miembro; la calidad de los materiales especificados y las curvas constitutivas del hormigón y del acero de refuerzo" (Aguiar, 2019, p.145).

2.5 Sectorización Puntos de Desempeño Visión 2011

De acuerdo con el SEAOC 1995, la curva de capacidad puede sectorizarse de la siguiente forma:

Figura 1. Sectorización de puntos de desempeño visión 2011.

Fuente: (Propia,2021)

CAPÍTULO III. METOLODOLOGÍA

3.1. Enfoque

Para el debido desarrollo del proyecto, se establecieron variables para la obtención de resultados. A continuación, se enumeran las variables de estudio y enfoque de la investigación

3.1.1. Variables

3.1.1.1. Variables de Control

• Desplazamiento en el dominio inelástico en el diafragma superior del edificio.

3.1.1.2 Variables Observables

• Ductilidad.

3.1.2. Hipótesis

3.1.2.1. Hipótesis Nula

Basados en valores numéricos empíricos, no existe una relación directamente proporcional entre el valor del desplazamiento en el diafragma superior del edificio en el dominio inelástico y la variable correspondiente a los valores numéricos de ductilidad en el sismo de colapso.

3.1.2.2. Hipótesis Alterna

Basados en valores numéricos empíricos, existe una relación directamente proporcional entre el valor del desplazamiento en el diafragma superior del edificio en el dominio inelástico y la variable correspondiente a los valores numéricos de ductilidad en el sismo de colapso.

3.2. Operacionalización de las Variables

Al identificarse las variables, el siguiente paso es su operacionalización, en el cual se logran convertir las ideas de investigación, expresadas en los objetivos formulados, en acciones

específicas que permitan su valoración real mediante la aplicación de las estrategias y procedimientos. La Tabla 1 muestra el desglose de las preguntas de investigación y los objetivos específicos, así mismo, las variables que surgen a partir de estas.

Tabla 1. Operacionalización del Proyecto.

Aplicación del Análisis Estático No Lineal (Pushover) a una Edificación de 8 Niveles con Marcos Rígidos Especiales					
Problema	Obj. General	Pregunta de Investigación	Objetivos Específicos	Variables de Control	Variables Observables
¿Qué metodología se debería aplicar en el Código Hondureño de la construcción para confirmar que el detallado de los marcos rígidos especiales sea el adecuado frente a los objetivos de desempeño a los estándares ATC- 40, FEMA-440 Y ASCE 41-13?	"Diseñar un edifício de ocho niveles utilizando el análisis estático y análisis modal espectral del CHOC-08 y aplicar la metodología del análisis no lineal (pushover) para evaluar el desempeño de la estructura."	 ¿Qué ventajas proporcionaría el aplicar el análisis estático no lineal (pushover) a la seguridad estructural de una edificación? ¿El detallado de los marcos rígidos especiales del CHOC-08, cumple con los a los objetivos de desempeño a los estándares ATC- 40, FEMA-440 Y ASCE 41-13? 	 Definir las ventajas que proporcionaría el implementar el análisis estático no lineal (pushover) a la seguridad estructural de una edificación. Confirmar que el detallado de los marcos rígidos especiales del CHOC- 08, cumpla con los requerimientos mínimos de desempeño establecidos en los estándares ATC-40, FEMA-440 Y ASCE 41-13. 	1) Desplazamiento en el dominio inelástico	1) Ductilidad

Fuente: (Propia,2021)

La Tabla 1 muestra las variables que serán utilizadas en el presente proyecto, siendo la variable dependiente el diseño a realizar y las variables observables son aquellas necesarias para poder llegar al diseño.

3.2.1 Diagrama de las Variables de Operacionalización.

Figura 2. Diagramas de las Variables de Operacionalización.

Fuente: (Propia,2021)

3.3. Métodos

Dadas las características del diseño se presenta a continuación los instrumentos, técnicas y cronología utilizada para el desarrollo del proyecto.

3.3.1. Técnicas e instrumentos

Las técnicas e instrumentos facilitan la manera en la que se obtienen los datos, se analizan y se procesan para poder realizar un diseño más preciso y económico. Para este diseño las técnicas e instrumentos utilizados fueron los siguientes:

3.3.1.1.1. Instrumentos

Figura 3. Logo de Software Etabs. Fuente: (CSI Spain, 2016)

Figura 4.Logo de Software Etabs 2019.

Fuente: (CSI Spain, 2016)

Figura 5. Logo de Autocad.

Fuente: (Autodesk, 2021)

Figura 6. Logo de Microsoft Office.

Fuente: (Microsoft Office, 2021)

3.3.1.1.2. Ordenadores

Para realizar las simulaciones de la unidad de análisis y respuesta, se utilizaran dos ordenadores portátiles con las siguientes características:

- Marca: Asus
 Procesador: AMD Ryzen 7, 3750H with Radeon Vega Mobile Gfx ,2.30 GHz
 Memoria RAM: 16.00 GB
 Tipo de Sistema: Sistema operativo de 64 bits, procesador basado en x64
 Número de Núcleos: 4
- Marca: Dell Inspiron 15 7000 Gaming Procesador: Intel Core i7 7700HQ CPU, 2.80GHz Memoria RAM: 16.00 GB Tipo de Sistema: Sistema operativo de 64 bits, procesador basado en x64 Número de Núcleos: 4

Tiempo estimado por simulación para curva pushover: 40 a 120 minutos

3.3.1.2. Técnicas

- Diseño Estático de la unidad de análisis
- Diseño Dinámico de la unidad de análisis
- Diseño Estático No Lineal (PUSHOVER)

Figura 7. Obtención de Resultados.

Fuente: (Propia,2021)

3.4. Unidad de Análisis y Respuesta

A continuación, se definirán las unidades de análisis y unidades de respuesta que se utilizarán para el diseño:

3.4.1. Unidad de

Análisis

Figura 8. Render de Edificación propuesta para diseñar.

Fuente:(Fernandez,2021)

Figura 9. Render de Edificación propuesta para diseñar. Fuente: (Fernandez,2021)

Figura 1. Propuesta arquitectónica.

Fuente: (Propia,2021)

3.4.2. Unidad de Respuesta

3.4.2.1. Fuentes de Información

Para el diseño e investigación se necesita el apoyo de fuentes para así poder llevar a cabo un proyecto factible y con un gran enriquecimiento de conocimiento e información para el mejor entendimiento de lo que se realizara. Con la ayuda del Centro de Recursos para el Aprendizaje y la Investigación (CRAI) y de otras fuentes alternas será posible desarrollar el proyecto.

3.4.2.1.1. FUENTES PRIMARIAS

- Agencia Federal de Manejo de Emergencia (FEMA-356)
- □ El consejo de Tecnología Aplicada (ATC-40)
- Código Hondureño de la construcción (CHOC-08)
- □ Uniform Building Code-1994 (UBC-94)
- □ American Concrete Institute (ACI-318 95)

3.4.2.1.2. FUENTES SECUNDARIAS

Las fuentes secundarias de información fueron:

- Tesis del proyecto "Diseño de Pushover en edificaciones" (Moreno González, 2006)
- □ "Introducción al Análisis Pushover" (Joaquín Torre, 2021)

CAPÍTULO IV. ANÁLISIS Y RESULTADOS

Para aplicar la metodología pushover en la edificación, se modelo el edificio propuesto en el software ETABS 2016 y se aplicaron las cargas gravitacionales y ecológicas correspondientes para generar el diseño y posteriormente hacer el análisis por desempeño de la estructura.

4.1. Descripción del Edificio

Edificio de 7 niveles de dimensiones 20.35x23.87m.

Todos los niveles serán de uso habitacional y contara con un cubo central de gradas y elevadores para acceso a los niveles superiores.

Para efectos de simulación, se decidió tomar en cuenta el modelar el cubo de gradas con el fin de obtener un modelo más cercano a la realidad, ya que al momento de generarse un evento sísmico el módulo pasa a formar parte de las masas participativas de la estructura y al ubicarse al centro del edificio ayuda a que el módulo de masa y rigidez tengan una mayor aproximación.

4.2. Consideraciones Estructurales

El edificio se encuentra ubicado en la parte intermedia de la zona sísmica 4a, donde la aceleración pico del suelo ronda entre 0.25-0.30g por lo que se considera altamente sísmica.

El Código Hondureño de la Construcción nos indica que para esta zona el sistema estructural debe considerarse como marcos rígidos especiales.

La estructura estará formada por marcos rígidos especiales de concreto y losa monolítica. La cimentación será tipo zapata aislada.

En términos generales, se decidió analizar una edificación de uso habitacional ya que en nuestro medio están en tendencia las construcciones verticales y condominios. Se determinó utilizar un concreto de 4000 PSI y acero de refuerzo grado 60, por presentar una buena resistencia en este tipo de construcciones.

El predimensionamiento se realizó en base a los criterios expuestos en el libro "Diseño Sismorresistente de Edificaciones de Concreto Armado" de Ricardo Oviedo Sarmiento.
Para la capacidad soportante del suelo, se tomó como referencia un estudio geotécnico del sector norte de la ciudad de San Pedro Sula, puesto que es ahí donde se están desarrollando la mayoría de proyectos habitacionales actualmente.

4.2.1 Normas y Estándares de Diseño

- Código Hondureño de la Construcción CHOC-08
- Requisitos de Reglamento para Concreto Estructural ACI-318-95
- Agencia Federal de Manejo de Emergencia (FEMA-356)
- El Consejo de Tecnología Aplicada (ATC-40)
- Seismic Evaluation and Retrofit of Existing Buildings (ASCE 41-13)

4.2.2. Especificaciones de los Materiales

- Resistencia a la compresión del concreto: 280.00 kg/cm2
- Resistencia a la fluencia del acero: 4200 kg/cm2

4.2.3. Estudio de Suelos

• Capacidad Soportante del Suelo: 26.00 ton/m2

4.3. Cálculo De Cargas

- 4.3.1 Cargas Gravitacionales
 - 4.3.1.1 Carga Muerta

Cargas Gravitacional	es
Carga Muerta Losa 1-5	KG/M2
Ceramica	80.00
Firme de nivelacion	45.00
Cielo falso	10.00
Instalaciones	15.00
Divisiones	50.00
TOTAL	200.00

Cargas Gravitacional	es
Carga Muerta Losa 6 y 7 (azotea)	KG/M2
Firme de nivelacion	135.00
Cielo falso	10.00
Instalaciones	15.00
TOTAL	160.00

Carga de Pared	(kg/ml)
Altura de pared (m)	kg/ml
4.50	1147.96
1.95	497.45

Fuente: (Propia,2021)

Peso propio de la estructura incluido en el software de diseño.

4.3.1.2 Carga Viva

Cargas Gravitac	ionales
Carga Viva	KG/M2
Residencial	200.00
Azotea	150.00

Fuente: (Código Hondureño de la Construcción, 2008)

4.3.2 Cargas Ecológicas

4.3.2.1 Carga de Viento

- Velocidad Básica del Viento= 120 kph
- Presión Estática del viento (qs)= 69.60 kg/m2
- Coeficiente combinado (Ce)= 1.12
- Coeficiente de Presión (Cq)= 0.8-empuje 0.5-succion
- Factor de importancia (Iw)= 1.00

4.3.2.2 Carga de Sismo

- Factor de zona sísmica= 4a
- Aceleración pico del suelo= 0.28g
- Ductilidad Global asignada-Rw= 12
- Factor de importancia= 1.00
- Factor de amplificación del suelo= 1.00

4.3.2.2.1 Espectro de Diseño

Espectro	suelo S1	
z=	0.28	
g=	9.81	m/s2
Ta=	0.155	S
Tb=	0.364	S
S=	1	Suelo S1
e=	2	

a= 2.5*z*g (0.4+0.7*T/Ta)	2.75	seg
a= 2.75*z*g	7.55	seg
a=z*g*Se/T	6.87	seg

Tabla 2. Tabla de Periodo por Aceleración

TABLA DE PERIODO POR ACELERACIO		
T (seg)	a (m/s2)	a/Rw
0	2.75	0.23
0.155	7.55	0.63
0.364	7.55	0.63
0.4	6.87	0.57
0.45	6.10	0.51
0.5	5.49	0.46
0.55	4.99	0.42
0.6	4.58	0.38
0.65	4.23	0.35
0.7	3.92	0.33
0.75	3.66	0.31
0.8	3.43	0.29
0.85	3.23	0.27
0.9	3.05	0.25
0.95	2.89	0.24
1	2.75	0.23
1.5	1.83	0.15
2	1.37	0.11
2.5	1.10	0.09
3	0.92	0.08
3.5	0.78	0.07
4	0.69	0.06
4.5	0.61	0.05
5	0.55	0.05
5.5	0.50	0.04
6	0.46	0.04
6.5	0.42	0.04
7	0.39	0.03

Fuente: (Código Hondureño de la Construccion,2008)

Figura 2. Espectro de Respuesta. Fuente: (Propia,2021)

4.4. Combinaciones de Carga

Las combinaciones de carga que se definirán a continuación están basadas en el apartado 2.9.2 del Código Hondureño de la Construcción.

4.4.1. Resistencia

- L1: 1.4D+1.7L
- L2: 0.75(1.4D+1.7LL+1.87EY-0.56EX)
- L3: 0.75(1.4D+1.7L+1.87EY+0.56EX)
- L4: 0.75(1.4D+1.7L+1.87EX+0.56EY)
- L5: 0.75(1.4D+1.7L+1.87EX-0.56EY)
- L6: 0.75(1.4D+1.7L-1.87EY+0.56EX)
- L7: 0.75(1.4D+1.7L-1.87EY-0.56EX)
- L8: 0.75(1.4D+1.7L-1.87EX-0.56EY)
- L9: 0.75(1.4D+1.7-1.87EX+0.56EY)
- L10: 0.75(1.4D+1.7L+1.7WX+0.51WZ)
- L11: 0.75(1.4D+1.7L+1.7WZ+0.51WX)
- L12: 0.75(1.4D+1.7L+1.7WX-0.51WZ)
- L13: 0.75(1.4D+1.7L+1.7WZ-0.51WX)
- L14: 0.75(1.4D+1.7L-1.7WX+0.51WZ)
- L15: 0.75(1.4D+1.7L-1.7WZ+0.51WX)
- L16: 0.75(1.4D+1.7L-1.7WX-0.51WZ)
- L17: 0.75(1.4D+1.7L-1.7WZ-0.51WX)
- L18: 0.9D+1.3WX+0.39WZ
- L19: 0.9D+1.3WZ+0.39WX
- L20: 0.9D+1.3WX-0.39WZ
- L21: 0.9D+1.3WZ-0.39WX
- L22: 0.9D-1.3WX+0.39WZ

- L23: 0.9D-1.3WZ+0.39WX
- L24: 0.9D-1.3WX-0.39WZ
- L25: 0.9D-1.3WZ-0.39WX
- L26: 0.9D+1.43EX+0.429EZ
- L27: 0.9D+1.43EZ+0.429EX
- L28: 0.9D+1.43EX-0.429EZ
- L29: 0.9D+1.43EZ-0.429EX
- L30: 0.90D-1.43EX+0.429EZ
- L31: 0.90D-1.43EZ+0.429EX
- L32: 0.90D-1.43EX-0.429EZ
- L33: 0.90D-1.43EZ-0.429EX

4.4.2. Servicio

- LS1: D+L
- LS2: 0.75(D+L+WX+0.30WZ)
- LS3: 0.75(D+L+WZ+0.30WX)
- LS4: 0.75(D+L+WX-0.30WZ)
- LS5: 0.75(D+L+WZ-0.30WX)
- LS6: 0.75(D+L-WX+0.30WZ)
- LS7: 0.75(D+L-WZ+0.30WX)
- LS8: 0.75(D+L-WX-0.30WZ)
- LS9: 0.75(D+L-WZ-0.30WX)
- LS10: 0.9D+WX+0.30WZ
- LS11: 0.9D+WZ+0.30WX
- LS11: 0.9D+WZ+0.30WX
- LS12: 0.9D+WX-0.30WZ
- LS13: 0.9D+WZ-0.30WX
- LS14: 0.9D-WX+0.30WZ
- LS15: 0.9D-WZ+0.30WX
- LS16: 0.9D-WX-0.30WZ
- LS17: 0.9D-WZ-0.30WX
- LS18: 0.75(D+L+EX+0.30ZZ)
- LS18: 0.75(D+L+EX+0.30ZZ)
- LS19: 0.75(D+L+EZ+0.30EX)
- LS20: 0.75(D+L+EX-0.30EZ)
- LS21: 0.75(D+L+EZ-0.30EX)
- LS22: 0.75(D+L-EX+0.30EZ)
- LS23: 0.75(D+L-EZ+0.30EX)
- LS24: 0.75(D+L-EX-0.30EZ)
- LS25: 0.75(D+L-EZ-0.30EX)
- LS26: 0.9D+EX+0.30EZ
- LS27: 0.9D+EZ+0.30EX

- LS28: 0.9D+EX-0.30EZ
- LS29: 0.9D+EZ-0.30EX
- LS30: 0.9D-EX+0.30EZ
- LS30: 0.9D-EX+0.30EZ
- LS31: 0.9D-EZ+0.30EX
- LS31: 0.9D-EZ+0.30EX
- LS32: 0.9D-EX-0.30EZ
- LS33: 0.9D-EZ-0.30EX
- LS33: 0.9D-EZ-0.30EX

4.5. Predimensionamiento de Elementos Estructurales

Tabla 3. Predimensionamiento de Vigas

1. Predimensionamiento Vigas

1.1 Viga Tipo 1	
Longitud	8
h= (1/10*L)	0.80
b= (1/2*h)	0.4

usar viga 70x35 en revision inicial

1.2 Viga Tipo 2

Longitud	5.5 r
h= (1/10*L)	0.60 r
b= (1/2*h)	0.30 r

Fuente: (Propia,2021)

Tabla 4. Predimensionamiento de Columnas

2. Predimensionamiento Columnas Acol= Pservicio/0.45 f'c Pservicio= P*At*Npisos

Ρ	1000 kg/	′m2
At	54 m2	<u>)</u>
Npisos	6	

Pservicio	324000	kg
Acol	2571.428571	cm2
	50.70925528	cm/la

do usar columna 50x50 en revision inicial

Tabla 5. Espesor de Losa

3. Espesor de losa

3.1 Relacion lado largo entre lado corto

Largo	4.35 m
Corto	4.00 m
L/C	1.0875 Losa er

1.0875 Losa en 2 sentidos

3.2.1 Si el analisis	es losa en	dos sentidos
onena on en amanona	co 1000 cm	400 50110405

Espesor

0.09 m Revision inicial sera con losa de 15cm

4.6. Análisis General del Edificio

El análisis estructural de la edificación se realizó vía elementos finitos. El análisis sísmico se hizo de tipo modal espectral (dinámico).

Figura 3. Modelo de Edificio de Estudio.

Fuente: (Propia,2021)

4.6.1. Resultados Carga Sísmica

Se realizó una corrida preliminar del modelo ya cargado, asegurándonos que los elementos propuestos cumplan con las solicitaciones a las que estarán sometidos.

Esta primera iteración nos brinda el periodo fundamental de la estructura y porcentaje de masa participativa de la misma.

4.6.1.2 Periodos Fundamentales de la Estructura en X y Método Estático

- Periodo X = 1.781s
- Periodo Y = 1.426s

Tabla 6.Sismo Estático.

	SISMO ESTATICO UBC-94														
Load Pattern	Tipo Di	po Direccion	Periodo Fundamenta	Ct	Nivel	Nivel	Rw	z	s		Periodo	Coeficiente	Peso Usado	Cortante Basal	Ft Usada
				ft	Superior	intenor					sec	Usado	kgf	kgf	kgf
EQX	Seismic	х	Program Calculated	0.07	Story7	Base	12	0.285	1	1	1.781	0.9	3213332.59	53726.92	8902.1
EQY	Seismic	Y	Program Calculated	0.07	Story7	Base	12	0.285	1	1	1.426	0.955882	3213332.59	53726.92	7657.48
	Eventer (Dramin 2021)														

Fuente: (Propia,2021)

4.6.1.3 Porcentaje de Masa Participativa de la Estructura

Para el análisis se consideraron 35 modos de vibración de la estructura, alcanzando el mayor porcentaje de masa en el sentido X en el modo 1 con 64.74% de la masa total y con un período de 1.781 seg.

Period UX

Tabla 7. Modos de Vibración de la Estructura.

Case	would	sec	07	01	Sum OX	Sumor	104	NI	Juintix	Juni Ki
Modal	1	1.781	0.6974	0.0432	0.6974	0.0432	0.0061	0.1097	0.0061	0.1097
Modal	2	1.7	0.1639	0.2539	0.8613	0.2971	0.0364	0.0255	0.0424	0.1352
Modal	3	1.426	0.0015	0.5648	0.8629	0.862	0.0954	0.0004	0.1378	0.1355
Modal	4	0.581	0.0686	0.0052	0.9315	0.8671	0.0371	0.5504	0.1749	0.686
Modal	5	0.556	0.0174	0.0259	0.9488	0.893	0.204	0.1404	0.3789	0.8264
Modal	6	0.467	0.0001	0.0589	0.949	0.952	0.4536	0.0011	0.8326	0.8275
Modal	7	0.337	0.0188	0.0009	0.9678	0.9529	0.0024	0.035	0.835	0.8625
Modal	8	0.321	0.0023	0.0073	0.9701	0.9602	0.0157	0.004	0.8507	0.8666
Modal	9	0.278	8.36E-07	0.0097	0.9701	0.9699	0.0173	2.99E-05	0.868	0.8666
Modal	10	0.251	0.0059	0.0001	0.976	0.97	0.0002	0.0366	0.8682	0.9032
Modal	11	0.233	0	0.007	0.976	0.977	0.0355	1.11E-05	0.9037	0.9032
Modal	12	0.222	0.0001	3.75E-05	0.976	0.977	0.0001	0.0002	0.9038	0.9034
Modal	13	0.207	0.0044	3.60E-06	0.9804	0.977	0.0001	0.0201	0.9039	0.9235
Modal	14	0.186	9.68E-07	0.0025	0.9804	0.9795	0.0121	1.68E-06	0.916	0.9235
Modal	15	0.177	3.01E-05	0.0009	0.9804	0.9804	0.0065	0.0001	0.9224	0.9236
Modal	16	0.172	0.0002	0.0013	0.9807	0.9817	0.0051	0.0007	0.9275	0.9243
Modal	17	0.166	0.0019	0.0001	0.9825	0.9818	0.0001	0.0057	0.9276	0.93
Modal	18	0.15	3.24E-05	0.0001	0.9825	0.9819	0.0007	0.0002	0.9283	0.9302
Modal	19	0.144	1.72E-05	0.0011	0.9826	0.983	0.0034	0.0001	0.9317	0.9303
Modal	20	0.142	0.0005	3.15E-05	0.983	0.983	0.0001	0.0023	0.9318	0.9325
Modal	21	0.126	8.80E-07	0.0002	0.983	0.9832	0.0013	5.94E-06	0.9331	0.9325
Modal	22	0.04	0.0125	3.96E-05	0.9955	0.9833	0.0001	0.0497	0.9332	0.9823
Modal	23	0.038	0	0.0136	0.9955	0.9969	0.0542	0	0.9875	0.9823
Modal	24	0.038	0	0.0002	0.9955	0.9971	0.0008	3.14E-05	0.9883	0.9823
Modal	25	0.038	1.91E-06	0.0003	0.9955	0.9974	0.0013	1.27E-05	0.9896	0.9823
Modal	26	0.038	4.32E-06	0.0003	0.9955	0.9977	0.0013	2.11E-05	0.9909	0.9824
Modal	27	0.037	1.68E-05	0.0003	0.9955	0.998	0.001	0.0001	0.9919	0.9824
Modal	28	0.037	0.0001	4.75E-05	0.9956	0.9981	0.0002	0.0002	0.9921	0.9827
Modal	29	0.037	3.35E-06	2.15E-05	0.9956	0.9981	0.0001	1.25E-05	0.9922	0.9827
Modal	30	0.036	0.0014	0.001	0.997	0.9991	0.0042	0.0054	0.9964	0.988
Modal	31	0.036	0.0001	0.0001	0.9971	0.9992	0.0005	0.0005	0.9969	0.9885
Modal	32	0.036	0	0.0001	0.9971	0.9993	0.0002	0	0.9971	0.9885
Modal	33	0.036	0.0001	2.76E-05	0.9972	0.9993	0.0001	0.0003	0.9972	0.9888
Modal	34	0.035	0.0001	1.21E-05	0.9973	0.9993	0.0001	0.0004	0.9973	0.9892
Modal	35	0.035	4.31E-05	4.19E-06	0.9973	0.9993	8.64E-06	0.0002	0.9973	0.9893

Fuente: (Propia,2021)

4.6.1.4 Cortantes Dinámicos

Tabla 8. Cortantes Dinámicos para sentido en X.

DISO	Casa da Carga	Р	VX	VY	т	MX	MY
PISO	Caso de Carga	kgf	kgf	kgf	kgf-m	kgf-m	kgf-m
N8	SPECX	0	2617.07	245.97	31221.94	0	0
N7	SPECX	0	12215.95	1630.21	143622.39	1107.05	11778.68
N5	SPECX	0	20217.57	2830.06	239764.91	8142.99	64780.95
N5	SPECX	0	25734.29	3623.82	305522.97	20607.94	152279.25
N4	SPECX	0	30220.71	4253.69	358197	36066.68	259756.04
N3	SPECX	0	34202.26	4831.7	406036.32	53629.41	382699.82
N2	SPECX	0	38143.05	5385.97	452662.69	73083.24	519471.41
N1	SPECX	0	38355.35	5406.2	455248.82	94545.05	670262.11

CORTANTES DINAMICOS EN X

Fuente: (Propia,2021)

Tabla 9. Cortantes Dinámicos para sentido en Y.

							-
BISO	Casa da Carga	Р	VX	VY	т	MX	MY
PISO	Caso de Calga	kgf	kgf	kgf	kgf-m	kgf-m	kgf-m
N8	SPECY	0	331.49	2550.11	21467.26	0	0
N7	SPECY	0	1707.28	11593.16	120293.93	11477.3	1491.95
N5	SPECY	0	2872.12	19884.37	207941.72	62193.52	9095.58
N5	SPECY	0	3645.29	25293.82	265812	149288.39	21670.72
N4	SPECY	0	4269.16	29513.67	312430.19	257359.81	37074.69
N3	SPECY	0	4839.02	33626.82	354716.36	378990.84	54559.87
N2	SPECY	0	5379.36	37618.27	396465.4	513111.42	73960.73
N1	SPECY	0	5406.23	37853.13	398740.44	661032.09	95367.13

CORTANTES DINAMICOS EN Y

4.6.1.5 Escalamiento de Cortantes

Acorde al artículo 1.3.6.5.3 del CHOC-08 se deberá hacer una comparación entre los cortantes estáticos y dinámicos, si el cortante dinámico es menor que el cortante estático se deberá amplificar mediante un factor de escalamiento, lo que genero los siguientes resultados:

V metodo A 97221.5284 kg

Tabla 10.Escalamiento de Cortantes.

Sismo	Cortante (kg)	90% Cortante (kg)	Spec.X (kg)	Spec.Y (kg)	Rev.
Estatico X	53,726.92	48,354.23	38,355.35		Escalar
Estatico Y	53,726.92	48,354.23		37,853.13	Escalar

Metodo A	Cortante (kg)	80% Cortante (kg)
Vax	97221.52838	77777.2227
Vay	97221.52838	77777.2227

FACTOR DE ESCALA						
Fex 1.507						
Fey	1.513					

Fuente: (Propia,2021)

Cortantes Escalados

Tabla 11.Cortantes Escalados para sentido X.

DISO	Caso de VX VY FX FY FE	66	Fox	Fov				
FISO	Carga	kgf	kgf	kgf	kgf	FE	Fex	геу
N8	SPECX	2617.07	245.97	2617.07	245.97	1.507	3,943.55	370.64
N7	SPECX	12215.95	1630.21	9598.88	1384.24	1.507	14,464.13	2,085.85
N5	SPECX	20217.57	2830.06	8001.62	1199.85	1.507	12,057.29	1,808.00
N5	SPECX	25734.29	3623.82	5516.72	793.76	1.507	8,312.90	1,196.08
N4	SPECX	30220.71	4253.69	4486.42	629.87	1.507	6,760.39	949.12
N3	SPECX	34202.26	4831.7	3981.55	578.01	1.507	5,999.62	870.98
N2	SPECX	38143.05	5385.97	3940.79	554.27	1.507	5 <i>,</i> 938.20	835.21
N1	SPECX	38355.35	5406.2	212.3	20.23	1.507	319.91	30.48

DISO	Caso de	VX	VY	FX	FY	EE	Fox	Fov
FISO	Carga	kgf	kgf	kgf	kgf	FE	Fex	геу
N8	SPECY	331.49	2550.11	331.49	2550.11	1.51	501.65	3,859.12
N7	SPECY	1707.28	11593.16	1375.79	9043.05	1.51	2,082.00	13,684.97
N5	SPECY	2872.12	19884.37	1164.84	8291.21	1.51	1,762.77	12,547.20
N5	SPECY	3645.29	25293.82	773.17	5409.45	1.51	1,170.05	8,186.19
N4	SPECY	4269.16	29513.67	623.87	4219.85	1.51	944.11	6,385.96
N3	SPECY	4839.02	33626.82	569.86	4113.15	1.51	862.38	6,224.49
N2	SPECY	5379.36	37618.27	540.34	3991.45	1.51	817.70	6,040.31
N1	SPECY	5406.23	37853.13	26.87	234.86	1.51	40.66	355.42

Tabla 12.Cortantes Escalados para sentido Y.

Fuente: (Propia,2021)

4.6.1.6 Revisión de Irregularidad Torsional

Se corrió el modelo nuevamente con las fuerzas dinámicas escaladas y posteriormente se verifico si el edificio presentaba irregularidad torsional.

Revisando los desplazamientos por piso se observó que en Y (positivo) el edificio presentaba irregularidad, por lo que se procedió a calcular los momentos torsores del mismo.

Tabla 13. Revisión de Irregularidad Torsional.

Story	ad Case/Com	Direction	Maximum	Average	Ratio	Ax	eX (m)	eY (m)	Fx (kgf)	Fy (kgf)	Mz (kgf-m)
N8	EQYEP	Y	0.018337	0.016315	1.124	0.877243	0.4994	0.0908	331.49	2550.11	- 407.67
N7	EQYEP	Y	0.020877	0.015857	1.317	1.203737	-1.5047	0.2395	1375.79	9043.05	2,440.82
N6	EQYEP	Y	0.019304	0.014541	1.328	1.223893	-1.4663	0.2367	1164.84	8291.21	2,437.29
N5	EQYEP	Y	0.016755	0.012547	1.335	1.238359	-1.4693	0.2391	773.17	5409.45	1,696.10
N4	EQYEP	Y	0.013554	0.0101	1.342	1.250633	-1.4577	0.243	623.87	4219.85	1,396.53
N3	EQYEP	Y	0.009925	0.007356	1.349	1.264198	-1.4058	0.256	569.86	4113.15	1,424.61
N2	EQYEP	Y	0.005766	0.0043	1.341	1.248676	-1.2347	0.2613	540.34	3991.45	1,298.04
N1	EQYEP	Y	0.000899	0.000718	1.252	1.088699	-0.2998	0.0911	26.87	234.86	26.80

Fuente: (Etabs, 2021)

4.6.1.7 Revisión de Derivas

Tabla 14. Revisión de Derivas en EQXEP.

DERIVAS EQ	XEP				ERIVAS EQXEP										
Nivol	Casa da Carra	Direction	Max Drift	Avg Drift	Patio	СНОС	Vorificacion	Postriccion BA	Varificacion BA						
Niver	Caso de Calga	Direction	m	m	Natio	(0.03/Rw)	Verificación	Restriction PA							
N8	EQXEP	Diaph D1 X	0.000357	0.000342	1.045	0.0025	Cumple	0.00167	No considerar PDELTA						
N7	EQXEP	Diaph D1 X	0.000386	0.000374	1.03	0.0025	Cumple	0.00167	No considerar PDELTA						
N6	EQXEP	Diaph D1 X	0.000585	0.00057	1.026	0.0025	Cumple	0.00167	No considerar PDELTA						
N5	EQXEP	Diaph D1 X	0.000738	0.000719	1.026	0.0025	Cumple	0.00167	No considerar PDELTA						
N4	EQXEP	Diaph D1 X	0.000855	0.000834	1.026	0.0025	Cumple	0.00167	No considerar PDELTA						
N3	EQXEP	Diaph D1 X	0.000955	0.000934	1.023	0.0025	Cumple	0.00167	No considerar PDELTA						
N2	EQXEP	Diaph D1 X	0.001068	0.001045	1.022	0.0025	Cumple	0.00167	No considerar PDELTA						
N1	EQXEP	Diaph D1 X	0.000475	0.000454	1.046	0.0025	Cumple	0.00167	No considerar PDELTA						

DERIVAS EQXEN

Nivel Case de Carr		Direction	Max Drift	Avg Drift	Patia	СНОС	Varificacion	Postriccion DA	Varificacian DA
Niver	Caso de Carga	Direction	m	m	Ratio	(0.03/Rw)	venilication	Restriction PΔ	
N8	EQXEN	Diaph D1 X	0.000353	0.000342	1.032	0.0025	Cumple	0.00167	No considerar PDELTA
N7	EQXEN	Diaph D1 X	0.000433	0.000376	1.15	0.0025	Cumple	0.00167	No considerar PDELTA
N6	EQXEN	Diaph D1 X	0.000672	0.000575	1.17	0.0025	Cumple	0.00167	No considerar PDELTA
N5	EQXEN	Diaph D1 X	0.000851	0.000725	1.174	0.0025	Cumple	0.00167	No considerar PDELTA
N4	EQXEN	Diaph D1 X	0.000988	0.000841	1.175	0.0025	Cumple	0.00167	No considerar PDELTA
N3	EQXEN	Diaph D1 X	0.001115	0.000942	1.183	0.0025	Cumple	0.00167	No considerar PDELTA
N2	EQXEN	Diaph D1 X	0.001222	0.001055	1.158	0.0025	Cumple	0.00167	No considerar PDELTA
N1	EQXEN	Diaph D1 X	0.00052	0.000458	1.136	0.0025	Cumple	0.00167	No considerar PDELTA

Fuente: (Propia,2021)

Tabla 16. Revisión de Derivas en EQYEP.

DERIVAS EQ	DERIVAS EQYEP													
Nivol	Casa da Carga	Direction	Max Drift	Avg Drift	Patio	CHOC	Verificacion	Restriccion PA	Verificacion DA					
Nivei	Caso de Calga	Direction	m	m	Natio		venincacion	Restriction P A	Venneacion PA					
N8	EQYEP	Diaph D1 Y	0.00031	0.000301	1.027	0.0025	Cumple	0.00167	No considerar PDELTA					
N7	EQYEP	Diaph D1 Y	0.000355	0.000294	1.21	0.0025	Cumple	0.00167	No considerar PDELTA					
N6	EQYEP	Diaph D1 Y	0.000579	0.000446	1.299	0.0025	Cumple	0.00167	No considerar PDELTA					
N5	EQYEP	Diaph D1 Y	0.000728	0.000548	1.33	0.0025	Cumple	0.00167	No considerar PDELTA					
N4	EQYEP	Diaph D1 Y	0.000827	0.000614	1.346	0.0025	Cumple	0.00167	No considerar PDELTA					
N3	EQYEP	Diaph D1 Y	0.000949	0.000685	1.386	0.0025	Cumple	0.00167	No considerar PDELTA					
N2	EQYEP	Diaph D1 Y	0.001102	0.000798	1.381	0.0025	Cumple	0.00167	No considerar PDELTA					
N1	EQYEP	Diaph D1 Y	0.000458	0.000359	1.275	0.0025	Cumple	0.00167	No considerar PDELTA					

Fuente: (Propia,2021)

Tabla 17. Revisión de Derivas en EQYEP.

DEKIVAS EQYEN										
Nivol	Cara da Carga	Direction	Max Drift	Avg Drift	Patio	СНОС	Varificacion	Postriccion DA	Verificacion PA	
Nivei	Caso de Calga	Direction	m	m	Ratio		Verificación	Restriction PA		
N8	EQYEN	Diaph D1 Y	0.000319	0.000305	1.044	0.0025	Cumple	0.00167	No considerar PDELTA	
N7	EQYEN	Diaph D1 Y	0.000297	0.000289	1.025	0.0025	Cumple	0.00167	No considerar PDELTA	
N6	EQYEN	Diaph D1 Y	0.000474	0.000435	1.089	0.0025	Cumple	0.00167	No considerar PDELTA	
N5	EQYEN	Diaph D1 Y	0.000592	0.000533	1.111	0.0025	Cumple	0.00167	No considerar PDELTA	
N4	EQYEN	Diaph D1 Y	0.000668	0.000597	1.119	0.0025	Cumple	0.00167	No considerar PDELTA	
N3	EQYEN	Diaph D1 Y	0.000762	0.000662	1.151	0.0025	Cumple	0.00167	No considerar PDELTA	
N2	EQYEN	Diaph D1 Y	0.000885	0.000775	1.143	0.0025	Cumple	0.00167	No considerar PDELTA	
N1	EQYEN	Diaph D1 Y	0.00037	0.000356	1.038	0.0025	Cumple	0.00167	No considerar PDELTA	

DERIVAS EQYEN

Fuente: (Propia,2021)

Los desplazamientos laterales relativos del edificio no sobrepasan el límite establecido del CHOC-08 que corresponde a 0.03/Rw=0.0025 y tampoco sobrepasan la restricción P Δ por lo que no habrá que considerar dichos efectos en el modelo.

4.6.2. Irregularidades Verticales

4.6.2.1 Irregularidad de rigidez, piso suave

Amparándonos en el artículo 1.4.8.3 (b) del CHOC-08, la irregularidad por piso suave ya fue resuelta puesto que el análisis sísmico se hizo con el método dinámico.

4.6.2.2 Irregularidad de masa (peso)

Amparándonos en el artículo 1.4.8.3 (b) del CHOC-08, la irregularidad por piso suave ya fue resuelta puesto que el análisis sísmico se hizo con el método dinámico.

4.6.2.3 Irregularidad Geométrica Vertical

No aplica.

4.6.2.4 Discontinuidad en el plano de un elemento vertical

No aplica.

4.6.3. Irregularidades en Planta

4.6.3.1 Irregularidad Torsional

Se calcularon los momentos torsores en el análisis dinámico, por lo que la irregularidad ya fue resuelta.

4.6.3.2 Discontinuidad del Diafragma

Tabla 18. Discontinuidad del Diagrama.

Area Total	454.59	m2
Area Discontinuidades	22.08	m2
% Discontinuidad	0.05	%
Verificacion	Cumple	

Fuente: (Propia,2021)

4.6.3.3 Entrantes o Salientes, desalineamiento fuera del plano y sistemas no paralelos.

No aplican para esta edificación.

4.7 Aplicación de Análisis Pushover Primera Iteración Modelo 1

Una vez corrido el programa luego de las verificaciones antes indicadas, se corrió el diseño y revisión de secciones encontrando que todas estaban de conformidad a los esfuerzos de diseño de acuerdo a la norma CHOC-08 por lo que se acepta el dimensionamiento de la estructura.

Habiendo completado el análisis y diseño estructural de la edificación, se procede a realizar la primera simulación de análisis pushover en el programa computacional Etabs 2019. Para esta etapa del proyecto se decidió cambiar de versión en el programa ya que al hacer pruebas en Etabs 2016 la curva de cortante vs. desplazamiento no se generaba en forma y el tiempo de simulación era extenso.

Para realizar el pushover se deberán de crear tres estados de carga no lineal:

- Carga Muerta No Lineal
- Pushover X
- Pushover Y

Estos estados de carga determinaran el aumento de la carga monotónica que se aplicara al edificio hasta llevarlo a la falla.

4.7.1 Refuerzo de Elementos Estructurales

Para generar la curva pushover en el programa, se deberá de indicar el armado correspondiente a las vigas y columnas siendo estos los siguientes:

Figura 5. Planta de Entrepiso del 5 al 7.

Fuente: (Propia,2021)

2#6 arriba y 2#6 abajo anillo #3 @ 0.15m

V-1

0.30

8#7 arriba y 8#5 abajo y anillo #3 @ 0.15m V-2

0.60

V-4

Figura 6.Detalle de Vigas de 1 a 5.

Figura 7. Detalle de Vigas de 6 a 10

Fuente: (Propia,2021)

Figura 8. Detalles de Vigas y Columnas.

Fuente: (Propia,2021)

4.7.2 Asignación de Rotulas Plásticas

Las rotulas plásticas se introdujeron al programa utilizando las prestaciones del mismo que observa las indicaciones del ATC-40. Las tablas a continuación muestran la definición del diagrama Momento-Rotación para una columna y para una viga:

Point	Moment/Yield Mom	Rotation/SF
А	0	0
В	1	0
С	1.1	0.006551
D	0	0.006617
E	0	0.006683

Figura 9. Definición de rotula en columna.

Figura 10. Diagrama momento-rotación en columna.

Fuente: (Propia,2021)

Point	Moment/SF	Rotation/SF
E-	-0.2	-0.05
D-	-0.2	-0.02525
C-	-1.1	-0.025
B-	-1	0
Α	0	0
В	1	0
С	1.1	0.025
D	0.2	0.02525
E	0.2	0.05

Figura 11. Definición de rotula en vigas.

Fuente: (Propia,2021)

Figura 12. Diagrama momento-rotación en viga.

4.7.3 Curvas de Desempeño

Una vez realizado el pushover de la edificación, se procede a obtener las curvas de desempeño del edificio, tanto en el sentido X como en el sentido Y posteriormente ubicar los puntos de desempeño de la estructura. Los puntos de desempeño se determinan aplicando los factores de escala indicados en el ATC-40 al sismo de diseño:

- Sismo Frecuente: 0.238*sismo de diseño
- Sismo de Servicio: 0.50*sismo de diseño
- Sismo de Diseño: sismo de diseño
- Sismo Extremo: 1.50*sismo de diseño

Sismo de Diseño X: Cortante Dinámico*Rw= 38355.35 kg * 12= 460264.20 kg Sismo de Diseño Y: Cortante Dinámico*Rw= 37853.13 kg * 12= 454237.56 kg

Una vez calculados los factores de escala, se hará la revisión del desempeño de la estructura vía el método de desplazamiento por coeficientes (DCM) que corresponde al ATC-40 y el método de espectro capacidad (CSM) del FEMA 440.

4.7.3.1 Curva Cortante-Desplazamiento

Figura 13. Curva de desempeño en sentido X. Fuente: (Propia,2021)

Figura 14. Curva de desempeño sentido Y.

Fuente: (Propia,2021)

En el proceso de análisis se identificó la formación de las rótulas para cada punto de la curva de capacidad. La tabla a continuación muestra que la curva registro 18 pasos y formo 658 rotulas plásticas en X.

PUNTO	A-B	B-C	C-D	D-E	>E	A-IO	IO-LS	LS-CP	>CP	TOTAL
0	504	150	2	2	0	622	27	3	6	658
1	504	151	2	1	0	622	27	3	6	658
2	507	149	0	2	0	622	28	3	5	658
3	508	149	0	1	0	622	30	1	5	658
4	508	148	1	1	0	622	29	2	5	658
5	511	146	0	1	0	625	27	1	5	658
6	511	146	0	1	0	624	28	1	5	658
7	512	145	0	1	0	631	21	1	5	658
8	512	145	0	1	0	629	23	1	5	658
9	513	144	1	0	0	631	22	0	5	658
10	515	143	0	0	0	643	12	0	3	658
11	516	142	0	0	0	647	8	0	3	658
12	519	139	0	0	0	651	4	0	3	658
13	519	139	0	0	0	650	5	0	3	658
14	535	123	0	0	0	657	1	0	0	658
15	567	91	0	0	0	658	0	0	0	658
16	613	45	0	0	0	658	0	0	0	658
17	657	1	0	0	0	658	0	0	0	658
18	658	0	0	0	0	658	0	0	0	658

Figura 15. Formación de rotulas plásticas.

Fuente: (Propia,2021)

En el sentido Y se registraron 5 pasos y se formaron 658 rotulas plásticas.

PUNTO	A-B	B-C	C-D	D-E	>E	A-IO	IO-LS	LS-CP	>CP	TOTAL
0	658	0	0	0	0	658	0	0	0	658
1	657	1	0	0	0	658	0	0	0	658
2	577	81	0	0	0	658	0	0	0	658
3	539	119	0	0	0	658	0	0	0	658
4	512	146	0	0	0	658	0	0	0	658
5	486	172	0	0	0	657	1	0	0	658

Figura 16. Formación de rotulas plásticas.

Fuente: (Propia,2021)

4.7.4 Método de Desplazamiento por Coeficientes

En la curva pushover de cortante vs. desplazamiento obtenida del modelo, se procede a ubicar los puntos de desempeño de la misma con el fin de determinar su posición en la curva de capacidad y concluir en qué estado estará la edificación luego del evento sísmico.

4.7.4.1 Puntos de Desempeño en X

4.7.4.1.1 Sismo Frecuente

Figura 17. Desplazamiento 0.0348m, cortante 117028.69 kg. Fuente: (Propia,2021)

4.7.4.1.2 Sismo Servicio

Figura 18. Desplazamiento 0.072424m, cortante 236170.3 kg.

Fuente: (Propia,2021)

4.7.4.1.3 Sismo Diseño

Figura 19. Desplazamiento 0.144305m, cortante 425930.75kg.

4.7.4.1.4 Sismo Extremo

Fuente: (Propia,2021)

Figura 21. Desplazamiento 0.223373m, cortante 555959.8 kg.

4.7.4.1.6 Desempeño Estructural de la Edificación

Figura 22. Curva de desempeño Estructural.

Fuente: (Propia,2021)

Figura 23. Sectorización para método coeficiente de desplazamiento. Fuente: (Propia,2021)

Al ubicar los puntos de desempeño en la curva de capacidad se observa que estos se salen del límite establecido por el documento Visión 2000 a excepción del sismo frecuente que se mantuvo en la etapa elástica es decir totalmente funcional. En el resto de los casos el sismo de servicio se encuentra en la etapa de seguridad de vidas cuando debería encontrarse en la etapa operacional, el sismo de diseño se encuentra cerca del colapso cuando debería estar en seguridad de vida y el sismo extremo llega al colapso cuando debería estar cerca del colapso, por ende, en el sentido X el edificio no cumple.

4.7.4.2 Verificación Manual DCM

Como complemento y validación a las simulaciones realizadas por el programa Etabs 2019 para calcular el desempeño de la estructura, se determinó utilizar una hoja de cálculo elaborada por el

doctor Joaquín Torre, siguiendo el procedimiento establecido en el ATC-40 para el método de Coeficientes por Desplazamiento.

4.7.4.2.1 Características Dinámicas de la Estructura

Para poder tener conocimiento del comportamiento dinámico del edificio, se presenta en este apartado la información relevante del análisis modal, la cual será necesaria para poder realizar el análisis por desempeño.

MASAS POR N	MASAS POR NIVEL										
Nivel	UX	UY	UZ								
	kgf-s²/m	kgf-s²/m	kgf-s²/m								
N8	5,799.24	5,799.24	0								
N7	43,297.72	43,297.72	0								
N6	54,136.18	54,136.18	0								
N5	53,995.54	53 <i>,</i> 995.54	0								
N4	54,039.83	54,039.83	0								
N3	54,122.68	54,122.68	0								
N2	54,053.12	54,053.12	0								
N1	8,224.41	8,224.41	0								
Sumas =	327,668.72	kgf-s²/m									
W =	3,213,447.14	Kg									

Del programa se obtienen las masas por nivel:

Figura 24. Masas por nivel.

Fuente: (Propia,2021)

La relación de períodos está en base al período del primer modo de vibración. Las formas modales las calculó el programa y se normalizaron de manera que el valor en el nivel más alto sea 1.00 en cada modo de vibración.

El factor de participación modal se encuentra por:

Ecuación 1. Factor de Participación Modal

$$PF_{Rm} = \left[\frac{\sum_{i=1}^{N} (W_i \phi_i) / g}{\sum_{i=1}^{N} (W_i \phi_i^2) / g}\right]$$
(1)

Y el coeficiente de masa modal efectiva:

Ecuación 2. Coeficiente de masa modal efectiva.

$$\alpha_m = \frac{[\sum_{i=1}^N (W_i \phi_i)/g]^2}{[\sum_{i=1}^N W_i/g][\sum_{i=1}^N (W_i \phi_i^2)/g]}$$
(2)

Donde, N es el número de niveles; W_i es el peso de cada nivel que participó en el análisis; ϕ_i es la forma modal del primer modo en el nivel *i* y *g* es el valor de la aceleración de la gravedad.

NIIVEI	EIEV/(m)	FORMAS MODALES NORMALIZADAS								
INIVEL	ELEV. (m)	Ø ₁ (m)	Ø ₂ (m)	Ø ₃ (m)	Ø₄ (m)	Ø₅ (m)				
N8	33.50	1.00000	1.00000	1.00000	1.00000	1.00000				
N7	29.00	0.96364	0.96086	0.94545	0.73024	0.70999				
N6	24.50	0.90395	0.90308	0.87273	0.36853	0.35709				
N5	20.00	0.79982	0.79683	0.72727	-0.14224	-0.13767				
N4	15.50	0.65260	0.65144	0.56364	-0.58369	-0.56534				
N3	11.00	0.47217	0.47158	0.36364	-0.75000	-0.72746				
N2	6.50	0.26750	0.26747	0.15455	-0.56214	-0.54787				
N1	2.00	0.04264	0.04473	0.02727	-0.09591	-0.09853				
Base	0.00	0.00000	0.00000	0.00000	0.00000	0.00000				

Fuente: (Propia,2021)

Teniendo el período, por medio del espectro se encuentra la pseudo aceleración S_{am} de cada modo de vibración, la cual también es reportada por el programa Etabs 2019. Para construir la tabla de la figura 27 que es una extensión de **;Error! No se encuentra el origen de la referencia.** y que presenta las propiedades del primer modo de vibración, se normalizó la forma modal de manera que $[\sum_{i=1}^{N} (W_i \phi_i^2)/g] = 1.00$ y las aceleraciones por piso se encontraron por:

$$a_{im} = PF_m \phi_{im} S_{am} \tag{3}$$

La fuerza total en cada modo de vibración se encuentra por:

$$V_m = \alpha_m S_{am} W \tag{4}$$

		MODO 1					
NIVEL	m (Kg-seg ⁻ /m)	Ø1	mØ1	mØ ₁ ²	a ₁ (g)		
N8	5.80	0.0781	0.4532	0.0354	0.210		
N7	43.30	0.0753	3.2607	0.2456	0.203		
N6	54.14	0.0706	3.8243	0.2702	0.190		
N5	54.00	0.0625	3.3750	0.2110	0.168		
N4	54.04	0.0510	2.7560	0.1406	0.137		
N3	54.12	0.0369	1.9971	0.0737	0.099		
N2	54.05	0.0209	1.1300	0.0236	0.056		
N1	8.22	0.0033	0.0274	0.0001	0.009		
Base	0.00	0.0000	0.0000	0.0000	0.000		
Sumas:	327.67		16.8237	1.0000			
	Factor de						
	normalización:	0.0781					
	Sa (g) =	0.1600					
	PFr =	16.8229					
	α =	0.6974					
	arf =	2.6920					
	Vm (T) =	358.62					
	Vm/W =	0.1116					

Donde W es el peso total que participó en el análisis dinámico.

Figura 27. Propiedades del primer modo de vibración.

		MODO 2					
NIVEL	m (Kg-seg ⁻ /m)	Ø ₂	mØ₂	mØ2 ²	a ₂ (g)		
N8	5.80	0.0783	0.4542	0.0356	0.221		
N7	43.30	0.0752	3.2581	0.2452	0.212		
N6	54.14	0.0707	3.8287	0.2708	0.200		
N5	54.00	0.0624	3.3695	0.2103	0.176		
N4	54.04	0.0510	2.7570	0.1407	0.144		
N3	54.12	0.0369	1.9988	0.0738	0.104		
N2	54.05	0.0209	1.1322	0.0237	0.059		
N1	8.22	0.0035	0.0288	0.0001	0.010		
Base	0.00	0.0000	0.0000	0.0000	0.000		
Sumas:	327.67		16.8272	1.0001			
	Factor de						
	normalización:		0	.0783			
	Sa (g) =		0	.1676			
	PFr =		16	.8262			
	α =		0	.1639			
	arf =		2	.8209			
	Vm (T) =			88.30			
	Vm/W =		0	.0275			

Figura 28. Propiedades del segundo modo de vibración.

MODO 3 NIVEL m (Kg-seg²/m) mØ₃² Ø₃ mØ₃ a₃ (g) 5.80 N8 0.0845 0.4903 0.0414 0.274 N7 43.30 0.0799 3.4607 0.2766 0.259 54.14 0.0738 3.9941 0.2947 0.239 N6 54.00 0.0615 0.2041 0.199 N5 3.3198 N4 54.04 0.0476 2.5750 0.1227 0.155 N3 54.12 0.0307 1.6638 0.0511 0.100 N2 54.05 0.7062 0.0092 0.042 0.0131 Ν1 8.22 0.0023 0.0190 0.0000 0.007 Base 0.00 0.0000 0.0000 0.0000 0.000 327.67 16.2288 1.0000 Sumas: Factor de normalización: 0.0845 0.1999 Sa (g) = PFr = 16.2295 0.0015 α= arf = 3.2436 Vm (T) = 0.96 Vm/W = 0.0003

Fuente: (Propia,2021)

Figura 29. Propiedades del tercer modo de vibración.

4.7.4.2.2 Curva de Capacidad

Figura 30. Cortante vs. Desplazamiento.

Fuente: (Propia,2021)

Los puntos de la curva son los mostrados en la siguiente tabla, con los datos fue posible identificar el límite elástico del edificio en el punto 1, donde se observa un cambio de pendiente en la curva de capacidad.

_	PUNTO	Desplaz. (m)	V (Kg)	V (T)	Pendiente
Γ	0	0.0000	0.00	0.00	
	1	0.0326	110,065.29	110.07	3,380.0722
	2	0.0735	239,608.07	239.61	3,163.5924
	3	0.1136	348,915.51	348.92	2,727.2996
	4	0.1555	453,942.63	453.94	2,507.4517
	5	0.1722	489,860.59	489.86	2,154.0006
	6	0.1743	491,271.46	491.27	646.8913
	7	0.1804	501,990.45	501.99	1,761.8327
	8	0.1834	503,118.42	503.12	380.8136
	9	0.1958	522,617.62	522.62	1,571.7556
	10	0.1958	516,375.03	516.38	-1,040,431.6667
	11	0.2003	524,940.36	524.94	1,890.3840
	12	0.2034	528,555.78	528.56	1,169.6603
	13	0.2064	533,820.29	533.82	1,753.6676
	14	0.2105	538,400.63	538.40	1,132.9063
	15	0.2152	546,107.74	546.11	1,630.4443
	16	0.2152	543,175.07	543.18	-488,778.3333
	17	0.2229	555,959.80	555.96	1,648.5790
	18	0.1467	297,529.76	297.53	3,388.2244

Figura 31. Puntos para curva de capacidad.

4.7.4.2.3 Procedimiento DCM en X

Se evaluarán 5 puntos de desempeño, el sismo frecuente (0.238 del evento de diseño); El sismo de servicio (0.50 del evento de diseño); el de diseño (cortante dinámico); El evento extremo (1.50 del evento de diseño) y el punto de colapso.

Con el programa del Dr. Torre, se encuentra el límite elástico por una representación bilineal para cada punto investigado, en donde la convergencia se logra cuando el área bajo la curva bilineal se iguala al área bajo la curva de desempeño entre el origen y el punto investigado. Al lograr la convergencia, además de encontrar las coordenadas del límite elástico también es posible encontrar las coordenadas del punto de desempeño.

La rigidez inicial de la estructura es función del límite elástico

$$K_i = \frac{V_y}{\Delta_y} \tag{8}$$

Entre el origen y V_y^i del punto investigado, la representación bilineal debe de interceptar la curva de capacidad para la ordenada 0.60 V_y^i con la que se encuentra la rigidez efectiva de la estructura.

$$K_{eff}^{i} = \frac{0.60V_{y}^{i}}{\Delta_{0.6}^{i}}$$
(9)

Donde *i* es el número del punto. El desplazamiento en la cedencia será entonces:

$$\Delta_y^i = \frac{V_y^i}{K_{eff}^i} \tag{10}$$

Por interpolación lineal en la curva de desempeño, para cada cortante se encuentra el desplazamiento correspondiente. Para efectos comparativos, se muestra los valores esperados (calculados con la descripción anterior) y los entregados por el programa.

ESCENARIO	MAN	UAL	ETA	ABS	DIFERENCIA	
ESCEINARIO	V _{BASE} (T)	Δ _{TECHO} (m)	V _{BASE} (T)	Δ _{TECHO} (m)	V _{BASE} (T)	Δ _{TECHO} (m)
Sismo frecuente:	109.59	0.0324	117.03	0.0348	-6.36%	-6.73%
Sismo de servicio:	230.13	0.0705	236.17	0.0724	-2.56%	-2.63%
Sismo de diseño:	460.27	0.1584	425.93	0.1443	7.46%	8.90%
Sismo extremo:	-10.00	0.2230	546.93	0.2175	-101.83%	2.46%
Sismo colapso:	836.91	0.2804	555.96	0.2234	33.57%	20.33%

Figura 32. Puntos de desempeño de la estructura.

En el manual del programa se lee que encuentra los puntos de desempeño de acuerdo con ATC-40 (Applied Technology Council, 2005) para lo cual, los desplazamientos de cada punto de desempeño se calculan por:

$$\Delta_i = C_0 C_1 C_2 S_a \frac{T_e^2 g}{4\pi^2} \tag{11}$$

Donde C_0 es el factor de modificación que relaciona el desplazamiento espectral de un sistema equivalente de un grado de libertad al desplazamiento en el techo de un sistema de múltiples grados de libertad; C_1 es el factor de modificación que relaciona el desplazamiento inelástico máximo esperado a los desplazamientos calculados por la respuesta lineal elástica; C_2 es el factor de modificación que ajusta la degradación cíclica; S_a es la aceleración espectral y T_e es el período fundamental efectivo del edificio. Las aceleraciones espectrales y los desplazamientos espectrales para cada escenario se calcularon por medio de:

$$S_a = \frac{V/W}{\alpha_1} \tag{12}$$

$$S_d = \frac{\Delta_N}{PF_1 \phi_{N,1}} \tag{13}$$

Donde PF_1 es el factor de participación modal encontrado por medio de (2); α_1 es el coeficiente de masa modal efectiva encontrado por medio de (3) y $\emptyset_{N,1}$ es el desplazamiento modal (ver figura 27), todos para el primer modo de vibración y al nivel del techo, *N* es el nivel más alto (techo) de la estructura

Sin embargo, en este trabajo, los desplazamientos en el techo se calcularon en el proceso iterativo antes descrito. La demanda de ductilidad se encontró por medio de la ecuación (1) y el amortiguamiento por medio de:

$$\beta_{eq} = \frac{4[(S_{ay}S_{di}) - (S_{dy}S_{ai})]}{\frac{4\pi S_{ai}S_{di}}{2}} + 0.05$$
(14)

Lo cual es una representación del amortiguamiento histerético que se suma al amortiguamiento viscoso de la estructura y donde S_{ay} y S_{dy} son la aceleración y el desplazamiento espectral en el límite elástico respectivamente y S_{ai} y S_{di} son la aceleración y el desplazamiento espectral de cada escenario.

ESCENARIO	βeq (%)	μ	Te (seg
Sismo frecuente:	5.00	1.00	1.586
Sismo de servicio:	9.90	2.16	1.586
Sismo de diseño:	9.72	4.86	1.599
Sismo extremo:	9.81	6.84	#¡DIV/0!
Sismo colapso:	9.81	8.60	1.617

Figura 33. Aceleraciones y desplazamientos espectrales en el punto de desempeño.

Fuente: (Propia,2021)

El período efectivo T_e se calculó por medio de:

$$T_e = \sqrt{\frac{4S_d \pi^2}{S_a/g}} \tag{15}$$

Es importante observar que una vez que la estructura de desplaza más allá de su límite elástico, el amortiguamiento aumenta, así como también aumenta el período de la estructura como consecuencia del agrietamiento y la plastificación de algunos puntos de la estructura.

La curva de capacidad se sectorizó de acuerdo con los objetivos de Visión 2000.

Figura 34. Curva de Capacidad del Desempeño Estructural de la edificación. Fuente: (Propia,2021)

OBJETIVOS DE DESEMPEÑO EDIFICIO DE USO ORDINARIO					
FC CENIARIO	TOTALMENTE	OPERACIONAL	SEGURIDAD DE	CERCA DEL	
ESCENARIO	FUNCIONAL	(IO)	VIDA (LS)	COLAPSO (CP)	COLAPSO
Sismo frecuente					
Servicio					
Diseño					
Extremo					
Colapso					

Figura 35. Sectorización para método coeficiente de desplazamiento. Fuente: (Propia,2021)

Puede notarse en la gráfica que el punto correspondiente al evento extremo no fue encontrado porque el valor objetivo supera el valor máximo de la curva de capacidad, mientras el punto de diseño para el escenario de diseño, que tiene por objetivo encontrarse en el dominio de Seguridad de vida (LS), se calculó en prevención del colapso (CP); el punto de desempeño correspondiente a servicio se esperaba se ubicara en el dominio de ocupación inmediata (IO) donde los daños son menores y la funcionabilidad de la estructura se mantiene sin tener que esperar a hacer las intervenciones necesarias, pero fue encontrado en (LS) y el punto de sismo frecuente es el único que cumplió con el objetivo al entrar dentro del límite elástico.

Por consiguiente, se determina que la estructura no cumplió con los objetivos de desempeño, incluso, para el sismo extremo (aproximadamente 1.5 veces el sismo de diseño, o un período de retorno de 900 años), la estructura puede llegar a colapsar con la consecuente pérdida de vidas humanas además de cuantiosas pérdidas materiales.

4.7.4.3 Puntos de Desempeño en Y

Figura 36. Desplazamiento 0.036067m, cortante 131707.58 kg.

Fuente: (Propia,2021)

4.7.4.3.2 Sismo Servicio

Figura 37. Desplazamiento 0.074927m, cortante 247297.18kg

4.7.4.3.3 Sismo Diseño

Figura 38. Desplazamiento 0.148746m, cortante 404131.65 kg.

Fuente: (Propia,2021)

4.7.4.3.4 Sismo Extremo y Colapso

La curva de capacidad obtenida no encontró el punto de desempeño para el evento extremo y de colapso.

4.7.4.3.5 Desempeño Estructural de la Edificación

Figura 39. Curva de Capacidad del desempeño de la estructura. Fuente: (Propia,2021)
OBJETIVOS DE DESEMPEÑO EDIFICIO DE USO ORDINARIO									
ESCENARIO	TOTALMENTE FUNCIONAL	OPERACIONAL (IO)	SEGURIDAD DE VIDA (LS)	CERCA DEL COLAPSO (CP)	COLAPSO				
Sismo frecuente									
Servicio									
Diseño									
Extremo									
Colapso									

Figura 40. Sectorización para método coeficiente de desplazamiento.

Fuente: (Propia,2021)

Al ubicar los puntos de desempeño en la curva de capacidad se observa que estos se salen del límite establecido por el documento Visión 2000 a excepción del sismo frecuente que se mantuvo en la etapa elástica es decir totalmente funcional. En el resto de los casos el sismo de servicio se encuentra en la etapa de seguridad de vidas cuando debería encontrarse en la etapa operacional, el sismo de diseño se encuentra cerca del colapso cuando debería estar en seguridad de vida, cuando entramos al caso de sismo extremo el edificio ya presento un daño significativo en las etapas anteriores y por ende en el sentido Y el edificio no cumple.

		FORMAS MODALES NORMALIZADAS					
NIVEL	ELEV. (m)	Ø ₁ (m)	Ø ₂ (m)	Ø₃ (m)	Ø₄ (m)	Ø₅ (m)	
N8	33.50	0.58172	0.67768	1.00000	0.70285	-0.83804	
N7	29.00	1.00000	1.00000	0.78847	1.00000	-0.97251	
N6	24.50	0.93673	0.93539	0.73206	0.54626	-0.52303	
N5	20.00	0.82777	0.82599	0.63998	-0.15836	0.15527	
N4	15.50	0.68014	0.67695	0.51763	-0.79893	0.76226	
N3	11.00	0.49561	0.49413	0.37453	-1.05338	1.00000	
N2	6.50	0.28120	0.28267	0.21858	-0.79715	0.75780	
N1	2.00	0.03866	0.04112	0.04065	-0.11922	0.11813	
Base	0.00	0.00000	0.00000	0.00000	0.00000	0.00000	

4.7.4.3.6 Características Dinámicas de la Estructura

Figura 41.Formas modales normalizadas en Y.

Figura 42. Modos de vibración y porcentaje de masa participativa. Fuente: (Propia,2021)

Teniendo el período, por medio del espectro se encuentra la pseudo aceleración S_{am} de cada modo de vibración, la cual también es reportada por el programa Etabs 2019. Para construir la tabla de la figura 43 que es una extensión de **;Error! No se encuentra el origen de la referencia.** y que presenta las propiedades del primer modo de vibración, se normalizó la forma modal de manera que $[\sum_{i=1}^{N} (W_i \phi_i^2)/g] = 1.00$ y las aceleraciones por piso se encontraron por:

$$a_{im} = PF_m \phi_{im} S_{am} \tag{16}$$

La fuerza total en cada modo de vibración se encuentra por:

$$V_m = \alpha_m S_{am} W \tag{17}$$

	<i>u</i> 21 x	MODO 1					
NIVEL	m (Kg-seg ⁻ /m)	Ø1	mØ1	mØ1 ²	a ₁ (g)		
N8	5.80	0.0455	0.2636	0.0120	0.119		
N7	43.30	0.0781	3.3837	0.2644	0.205		
N6	54.14	0.0732	3.9630	0.2901	0.192		
N5	54.00	0.0647	3.4929	0.2260	0.170		
N4	54.04	0.0532	2.8723	0.1527	0.140		
N3	54.12	0.0387	2.0962	0.0812	0.102		
N2	54.05	0.0220	1.1878	0.0261	0.058		
N1	8.22	0.0030	0.0249	0.0001	0.008		
Base	0.00	0.0000	0.0000	0.0000	0.000		
Sumas:	327.67		17.2845	1.0525			
Factor	Factor de normalización:		0.0781				
	Sa (g) =		0.1600				
	PFr =		16.4220				
	α =		0.6974				
	arf =		2.6279				
	Vm (T) =		358.62				
	Vm/W =		0.1116				

Donde W es el peso total que participó en el análisis dinámico.

Figura 43. Propiedades del primer modo de vibración.

Fuente: (Propia,2021)

		MODO 2					
INIVEL	m (Kg-seg /m)	Ø ₂	mØ₂	mØ2 ²	a2 (g)		
N8	5.80	0.0531	0.3078	0.0163	0.146		
N7	43.30	0.0783	3.3908	0.2655	0.215		
N6	54.14	0.0733	3.9657	0.2905	0.201		
N5	54.00	0.0647	3.4928	0.2259	0.178		
N4	54.04	0.0530	2.8649	0.1519	0.146		
N3	54.12	0.0387	2.0944	0.0810	0.106		
N2	54.05	0.0221	1.1966	0.0265	0.061		
N1	8.22	0.0032	0.0265	0.0001	0.009		
Base	0.00	0.0000	0.0000	0.0000	0.000		
Sumas:	327.67		17.3394	1.0578			
Factor	r de normalización:	0.0783					
	Sa (g) =	0.1676					
	PFr =	16.3916					
α =		0.1639					
	arf =	2.7480					
	Vm (T) =	88.30					
	Vm/W =		0.02	275			

Figura 44. Propiedades del segundo modo de vibración.

	2	MODO 3					
NIVEL	m (Kg-seg ⁻ /m)	Ø ₃	mØ₃	mØ ₃ ²	a₃ (g)		
N8	5.80	0.0845	0.4903	0.0414	0.321		
N7	43.30	0.0667	2.8861	0.1924	0.253		
N6	54.14	0.0619	3.3504	0.2073	0.235		
N5	54.00	0.0541	2.9213	0.1581	0.206		
N4	54.04	0.0438	2.3648	0.1035	0.166		
N3	54.12	0.0317	1.7137	0.0543	0.120		
N2	54.05	0.0185	0.9988	0.0185	0.070		
N1	8.22	0.0034	0.0283	0.0001	0.013		
Base	0.00	0.0000	0.0000	0.0000	0.000		
Sumas:	327.67		14.7536	0.7755			
Factor	r de normalización:	0.0845					
	Sa (g) =	0.1999					
	PFr =	19.0242					
	α =	0.0015					
	arf =		3.8022				
	Vm (T) =	0.96					
	Vm/W =		0.0	0003			

Figura 45. Propiedades del tercer modo de vibración.

4.7.4.3.7 Curva de Capacidad

Fuente: (Propia,2021)

Los puntos de la curva son los mostrados en la siguiente tabla, con los datos fue posible identificar el límite elástico del edificio en el punto 1, donde se observa un cambio de pendiente en la curva de capacidad.

PUNTO	Desplaz. (m)	V (Kg)	V (T)	Pendiente
0	0	0	0.00	
1	0.030416	114384.1	114.38	3,760.6549
2	0.07064	237691.1	237.69	3,065.5084
3	0.111703	329702.2	329.70	2,240.7296
4	0.154398	415488	415.49	2,009.2720
5	0.193572	488337.1	488.34	1,859.6281

Figura 47. Puntos para curva de capacidad.

Fuente: (Propia,2021)

4.7.4.3.6 Procedimiento DCM en Y

La rigidez inicial de la estructura es función del límite elástico

$$K_i = \frac{V_y}{\Delta_y} \tag{18}$$

Entre el origen y V_y^i del punto investigado, la representación bilineal debe de interceptar la curva de capacidad para la ordenada 0.60 V_y^i con la que se encuentra la rigidez efectiva de la estructura.

$$K_{eff}^{i} = \frac{0.60V_{y}^{i}}{\Delta_{0.6}^{i}}$$
(19)

Donde *i* es el número del punto. El desplazamiento en la cedencia, será entonces:

$$\Delta_y^i = \frac{V_y^i}{K_{eff}^i} \tag{20}$$

Por interpolación lineal en la curva de desempeño, para cada cortante se encuentra el desplazamiento correspondiente. Para efectos comparativos, se muestra los valores esperados (calculados con la descripción anterior) y los entregados por el programa.

FCCENIARIO	MANUAL		ETA	ABS	DIFERENCIA		
ESCENARIO	V _{BASE} (T)	Δ _{TECHO} (m)	V _{BASE} (T)	Δ _{TECHO} (m)	V _{BASE} (T)	Δ_{TECHO} (m)	
Sismo frecuente:	108.15	0.0288	131.71	0.0361	-17.89%	-20.26%	
Sismo de servicio:	227.12	0.0672	247.30	0.0749	-8.16%	-10.33%	
Sismo de diseño:	454.24	0.1752	404.13	0.1487	11.03%	15.14%	
Sismo extremo:	-10.00	0.1936	0.00	0.0000	#¡DIV/0!	100.00%	
Sismo colapso:	836.91	0.2804	0.00	0.0000	100.00%	100.00%	

Figura 48. Puntos de desempeño de la estructura.

Fuente: (Propia,2021)

En el manual del programa se lee que encuentra los puntos de desempeño de acuerdo con ATC-40 (Applied Technology Council, 2005) para lo cual, los desplazamientos de cada punto de desempeño se calculan por:

$$\Delta_i = C_0 C_1 C_2 S_a \frac{T_e^2 g}{4\pi^2}$$
(21)

Donde C_0 es el factor de modificación que relaciona el desplazamiento espectral de un sistema equivalente de un grado de libertad al desplazamiento en el techo de un sistema de múltiples grados de libertad; C_1 es el factor de modificación que relaciona el desplazamiento inelástico máximo esperado a los desplazamientos calculados por la respuesta lineal elástica; C_2 es el factor de modificación que ajusta la degradación cíclica; S_a es la aceleración espectral y T_e es el período fundamental efectivo del edificio. Las aceleraciones espectrales y los desplazamientos espectrales para cada escenario se calcularon por medio de:

$$S_a = \frac{V/W}{\alpha_1} \tag{22}$$

$$S_d = \frac{\Delta_N}{PF_1 \phi_{N,1}} \tag{23}$$

Donde PF_1 es el factor de participación modal encontrado por medio de (2); α_1 es el coeficiente de masa modal efectiva encontrado por medio de (3) y $\phi_{N,1}$ es el desplazamiento modal (ver **;Error! No se encuentra el origen de la referencia.**), todos para el primer modo de vibración y al nivel del techo, *N* es el nivel más alto (techo) de la estructura

Sin embargo, en este trabajo, los desplazamientos en el techo se calcularon en el proceso iterativo antes descrito. La demanda de ductilidad se encontró por medio de la ecuación (1) y el amortiguamiento por medio de:

$$\beta_{eq} = \frac{4[(S_{ay}S_{di}) - (S_{dy}S_{ai})]}{\frac{4\pi S_{ai}S_{di}}{2}} + 0.05$$
(24)

Lo cual es una representación del amortiguamiento histerético que se suma al amortiguamiento viscoso de la estructura y donde S_{ay} y S_{dy} son la aceleración y el desplazamiento espectral en el límite elástico respectivamente y S_{ai} y S_{di} son la aceleración y el desplazamiento espectral de cada escenario.

ESCENARIO	βeq (%)	βeq (%) μ	
Sismo frecuente:	5.00	1.00	1.998
Sismo de servicio:	10.23	2.21	1.998
Sismo de diseño:	14.80	5.76	2.031
Sismo extremo:	#¡DIV/0!	6.37	#¡DIV/0!
Sismo colapso:	9.81	9.22	2.037

Figura 49. Aceleraciones y desplazamientos espectrales en el punto de desempeño. Fuente: (Propia,2021)

El período efectivo T_e se calculó por medio de:

$$T_e = \sqrt{\frac{4S_d \pi^2}{S_a/g}} \tag{25}$$

Es importante observar que una vez que la estructura de desplaza más allá de su límite elástico, el amortiguamiento aumenta, así como también aumenta el período de la estructura como consecuencia del agrietamiento y la plastificación de algunos puntos de la estructura.

La curva de capacidad se sectorizó de acuerdo con los objetivos de Visión 2000.

Figura 50. Curva de Capacidad de desempeño estructural.

Fuente: (Propia,2021)

OBJETIVOS DE DESEMPEÑO EDIFICIO DE USO ORDINARIO					
ESCENARIO	TOTALMENTE	OPERACIONAL	SEGURIDAD DE	CERCA DEL	COLAPSO
Sismo frecuente	TONCIONAL	(10)	VIDA (L3)	COLAF30 (CF)	
Servicio					
Diseño					
Extremo					
Colapso					

Figura 51. Sectorización para método coeficiente de desplazamiento.

Fuente: (Propia,2021)

Puede notarse en la gráfica que el punto correspondiente al evento extremo no fue encontrado porque el valor objetivo supera el valor máximo de la curva de capacidad, mientras el punto de diseño para el escenario de diseño, que tiene por objetivo encontrarse en el dominio de Seguridad de vida (LS), se calculó en prevención del colapso (CP); el punto de desempeño correspondiente a servicio se esperaba se ubicara en el dominio de ocupación inmediata (IO) donde los daños son menores y la funcionabilidad de la estructura se mantiene sin tener que esperar a hacer las intervenciones necesarias, pero fue encontrado en (LS) y el punto de sismo frecuente es el único que cumplió con el objetivo al entrar dentro del límite elástico.

Por consiguiente, se determina que la estructura no cumplió con los objetivos de desempeño, incluso, para el sismo extremo (aproximadamente 1.5 veces el sismo de diseño, o un período de retorno de 900 años), la estructura puede llegar a colapsar con la consecuente pérdida de vidas humanas además de cuantiosas pérdidas materiales.

4.7.5 Método de Espectro Capacidad

El método consiste en convertir el espectro de respuesta en aceleraciones espectrales en función de desplazamientos espectrales y superponer en esa gráfica, la curva de capacidad la cual también deberá ser convertida para el mismo formato.

Al igual que en el método DCM, se procederá a ubicar los puntos de desempeño estructural de la edificación.

4.7.5.1 Puntos de Desempeño en X

4.7.5.1.1 Sismo Frecuente

Figura 52. Desplazamiento 0.036136m, cortante 121367.66 kg.

.7.5.1.2 Sismo Servicio

Fuente: (Propia,2021)

4.7.5.1.3 Sismo Diseño

Figura 54. Desplazamiento 0.172783m, cortante 490269.35 kg.

Fuente: (Propia,2021)

4.7.5.1.4 Sismo Extremo y Colapso

No se encontró punto de desempeño para el evento extremo y de colapso.

4.7.5.1.5 Desempeño Estructural de la Edificación

Fuente: (Propia,2021)

4.7.5.1.6 Verificación Manual CSM en X

El método consiste en convertir el espectro de respuesta en aceleraciones espectrales en función de desplazamientos espectrales y superponer en esa gráfica, la curva de capacidad la cual también deberá ser convertida para el mismo formato. Para convertir el espectro elástico de aceleraciones normalizado (Aceleración en función del período), usamos la siguiente expresión (Applied Technology Council, 2005):

- -

$$S_{de} = \frac{T^2}{4\pi^2} S_{ae} \tag{26}$$

Y para la curva de capacidad:

$$S_{ai} = \frac{\frac{V_i}{W}}{\alpha_1}$$
(27)

$$S_{di} = \frac{\Delta_i}{PF_1 \cdot \phi_{N,1}} \tag{28}$$

Con lo que obtenemos los siguientes puntos:

PUNTO	Desplaz. (m)	V (Kg)	Sd (m)	Sa (g)	T (seg)
0	0	0.00	0	0	
1	0.032563	110.07	0.02476859	0.03965442	1.5857
2	0.073511	239.61	0.05591511	0.0863262	1.6147
3	0.11359	348.92	0.08640063	0.12570758	1.6634
4	0.155476	453.94	0.11826063	0.16354684	1.7061
5	0.172151	489.86	0.13094423	0.17648739	1.7282
6	0.174332	491.27	0.13260318	0.1769957	1.7366
7	0.180416	501.99	0.13723089	0.18085755	1.7477
8	0.183378	503.12	0.13948389	0.18126394	1.7600
9	0.195784	522.62	0.14892034	0.18828912	1.7843
10	0.19579	516.38	0.14892491	0.18604004	1.7951
11	0.200321	524.94	0.15237135	0.18912596	1.8009
12	0.203412	528.56	0.15472247	0.19042853	1.8085
13	0.206414	533.82	0.1570059	0.19232523	1.8128
14	0.210457	538.40	0.16008115	0.19397544	1.8227
15	0.215184	546.11	0.16367668	0.19675217	1.8300
16	0.21519	543.18	0.16368124	0.19569558	1.8349

Tabla 19. Conversión de la curva de capacidad a formato AD.

Fuente: (Propia,202	1)
---------------------	----

Para cada punto de desempeño es necesario desarrollar una representación bilineal tal y como se hizo con el método de los Coeficientes de desplazamientos (CSM) para encontrar las coordenadas del límite elástico con las cuales poder calcular el amortiguamiento equivalente (β_{eq}) y con este, encontrar los factores de reducción espectral SR_A y SR_V .

$$SR_A = \frac{3.21 - Ln(\beta_{eq})}{2.12}$$
(29)

$$SR_V = \frac{2.31 - Ln(\beta_{eq})}{1.65} \tag{30}$$

El objetivo es obtener un espectro de demanda reducido como consecuencia del aumento en el período fundamental del edificio (T_e) y del amortiguamiento efectivo (β_{eq}) . El espectro de respuesta está compuesto por 3 zonas, a saber: Entre el origen y $T = T_a$ es la zona de desplazamientos constantes; para $T_a \leq T \leq T_b$ la zona de aceleración constante y para $T > T_b$ la zona de velocidad constante.

El factor SR_A (19) se aplica para la zona de aceleración constante y SR_V (20) para la zona de velocidad constante.

Con el espectro reducido y escalado para el punto de desempeño, se superponen las curvas y en su intersección se encuentra el punto de desempeño. La intersección se encontró por medio de un programa desarrollado por el autor que consiste en un procedimiento iterativo.

La siguiente grafica muestra la superposición de ambas curvas, siendo la roja la correspondiente al espectro de demanda reducido, la curva en negro al espectro elástico escalado para el nivel de desempeño buscado, la curva verde es el espectro de capacidad y la café es la representación bilineal para el punto de desempeño buscado; El punto dentro de la curva de representación bilineal, representa el límite elástico para la estructura con el nivel de desempeño buscado.

Figura 56. Punto de desempeño encontrado en espectro de diseño ADRS. Fuente: (Propia,2021)

Se comparan los valores encontrados del cálculo manual con los obtenidos con Etabs:

ESCENARIO	FRECUENTE	SERVICIO	DISEÑO	EXTREMO	COLAPSO
Aceleración espectral en punto de desempeño, Sai (g) =	0.0414	0.0841	0.1452	0.1603	0.1603
Desplazamiento espectral en punto de desempeño, Sdi (m) =	0.0259	0.0544	0.1028	0.1155	0.1155
Período efectivo, Teff (seg)=	1.588	1.614	1.688	1.703	1.703
Cortante en la base para punto de desempeño, Vp (T) =	114.98	233.50	402.95	444.97	444.97
Desplazamiento del techo para punto de desempeño, Δp (m) =	0.0341	0.0716	0.1351	0.1519	0.1519
Amortiguamiento efectivo, βeff (%) =	5.18	6.05	8.79	21.20	7.24
Ductilidad, μ =	1.377	2.890	5.456	6.133	6.133

Figura 57. Puntos de desempeño encontramos método CSM.

Podemos observar que el punto de desempeño para sismo frecuente, servicio y diseño se encuentran fuera del límite establecido por Visión, para este caso en particular no se obtuvo el punto de desempeño para el sismo extremo y colapso ya que los valores estaban fuera del límite de la curva de capacidad, siendo esto un indicativo de que en el sentido X el edificio no cumple.

Procedemos a comparar los valores obtenidos del cálculo manual con Etabs:

Tabla 20. Tabla comparativa de valores.

FEETNARIO		FRECUENTE			SERVICIO		DISEÑO		
ESCENARIO	HOJA	ETABS	DIF	HOJA	ETABS	DIF	HOJA	ETABS	DIF
Aceleración espectral en punto de desempeño, Sai (g) =	0.0414	0.0421	-1.68%	0.0841	0.0954	-11.82%	0.1452	0.1664	-12.74%
Desplazamiento espectral en punto de desempeño, Sdi (m) =	0.0259	0.0288	-9.96%	0.0544	0.0698	-21.99%	0.1028	0.1391	-26.12%
Período efectivo, Teff (seg)=	1.588	1.688	-5.92%	1.614	2.037	-20.76%	1.688	2.139	-21.07%
Cortante en la base para punto de desempeño, Vp (T) =	114.98	121.37	-5.27%	233.50	276.58	-15.58%	402.95	490.27	-17.81%
Desplazamiento del techo para punto de desempeño, Δp (m) =	0.0341	0.0361	-5.59%	0.0716	0.0871	-17.79%	0.1351	0.1728	-21.79%
Amortiguamiento efectivo, βeff (%) =	5.18	0.05	98.94%	6.05	10.38	-41.73%	8.79	11.71	-24.96%
Ductilidad, μ =	1.377	1.111	19.37%	2.890	2.231	22.80%	5.456	2.418	55.69%

Fuente: (Propia,2021)

De la tabla comparativa puede concluirse que los valores obtenidos del cálculo manual vs. Etabs presentan diferencias porcentuales pequeñas, validando de esta forma el método CSM indicado en el ATC-40.

- 4.7.5.2 Puntos de Desempeño en Y
- 4.7.5.2.1 Sismo Frecuente

Figura 59. Desplazamiento 0.038744m, cortante 139913.85 kg.

Fuente: (Propia,2021)

4.7.5.2.2 Sismo Servicio

Figura 60. Desplazamiento 0.091311m, cortante 284009.5 kg

4.7.5.2.3 Sismo Diseño

No se encontró punto de desempeño para el sismo de diseño y por consiguiente no se podrá encontrar el punto para el evento extremo.

4.7.5.2.4 Verificación Manual CSM en Y

El método consiste en convertir el espectro de respuesta en aceleraciones espectrales en función de desplazamientos espectrales y superponer en esa gráfica, la curva de capacidad la cual también deberá ser convertida para el mismo formato. Para convertir el espectro elástico de aceleraciones normalizado (Aceleración en función del período), usamos la siguiente expresión (Applied Technology Council, 2005):

- -

$$S_{de} = \frac{T^2}{4\pi^2} S_{ae} \tag{31}$$

Y para la curva de capacidad:

$$S_{ai} = \frac{\frac{V_i}{W}}{\alpha_1}$$
(32)

$$S_{di} = \frac{\Delta_i}{PF_1 \cdot \phi_{N,1}} \tag{33}$$

Con lo que obtenemos los siguientes puntos:

Tabla 21. Conversión de la curva de capacidad a formato AD.

PUNTO	Desplaz. (m)	V (Kg)	Sd (m)	Sa (g)	T (seg)
0	0	0.00	0	0	
1	0.030416	114.38	0.04074146	0.04109093	1.9978
2	0.07064	237.69	0.09462049	0.08538731	2.1121
3	0.111703	329.70	0.14962334	0.11844104	2.2551
4	0.154398	415.49	0.20681221	0.14925845	2.3617
5	0.193572	488.34	0.25928479	0.1754285	2.4392

Fuente: (Propia,2021)

Para cada punto de desempeño es necesario desarrollar una representación bilineal tal y como se hizo con el método de los Coeficientes de desplazamientos (CSM) para encontrar las coordenadas del límite elástico con las cuales poder calcular el amortiguamiento equivalente (β_{eq}) y con este, encontrar los factores de reducción espectral SR_A y SR_V .

$$SR_A = \frac{3.21 - Ln(\beta_{eq})}{2.12}$$
(34)

$$SR_V = \frac{2.31 - Ln(\beta_{eq})}{1.65}$$
(35)

El objetivo es obtener un espectro de demanda reducido como consecuencia del aumento en el período fundamental del edificio (T_e) y del amortiguamiento efectivo (β_{eq}) . El espectro de respuesta está compuesto por 3 zonas, a saber: Entre el origen y $T = T_a$ es la zona de desplazamientos constantes; para $T_a \leq T \leq T_b$ la zona de aceleración constante y para $T > T_b$ la zona de velocidad constante.

El factor SR_A (19) se aplica para la zona de aceleración constante y SR_V (20) para la zona de velocidad constante.

Con el espectro reducido y escalado para el punto de desempeño, se superponen las curvas y en su intersección se encuentra el punto de desempeño. La intersección se encontró por medio de un programa desarrollado por el autor que consiste en un procedimiento iterativo.

La siguiente grafica muestra la superposición de ambas curvas, siendo la roja la correspondiente al espectro de demanda reducido, la curva en negro al espectro elástico escalado para el nivel de desempeño buscado, la curva verde es el espectro de capacidad y la café es la representación bilineal para el punto de desempeño buscado; El punto dentro de la curva de representación bilineal, representa el límite elástico para la estructura con el nivel de desempeño buscado.

Figura 61. Punto de desempeño. Fuente: (Propia,2021)

Se comparan los valores encontrados del cálculo manual con los obtenidos con Etabs:

ESCENARIO	FRECUENTE	SERVICIO	DISEÑO	EXTREMO	COLAPSO
Aceleración espectral en punto de desempeño, Sai (g) =	0.0340	0.0609	0.1034	0.1387	0.1387
Desplazamiento espectral en punto de desempeño, Sdi (m) =	0.0337	0.0648	0.1245	0.1872	0.1872
Período efectivo, Teff (seg)=	1.998	2.070	2.202	2.331	2.331
Cortante en la base para punto de desempeño, Vp (T) =	94.52	169.55	287.72	386.08	386.08
Desplazamiento del techo para punto de desempeño, Δp (m) =	0.0251	0.0484	0.0930	0.1398	0.1398
Amortiguamiento efectivo, βeff (%) =	5.00	7.95	11.25	13.34	15.31
Ductilidad, μ =	0.617	1.188	2.282	3.431	3.431

Tabla 22. Puntos de desempeño encontramos método CSM.

Fuente: (Propia,2021)

Figura 62. Sectorización de Puntos de Desempeño.

Fuente: (Propia,2021)

Podemos observar que el punto de desempeño para sismo frecuente y servicio se encuentran fuera del límite establecido por Visión, para este caso en particular no se obtuvo el punto de desempeño para el sismo de diseño, extremo y colapso ya que los valores estaban fuera del límite de la curva de capacidad, siendo esto un indicativo de que en el sentido Y el edificio no cumple.

Procedemos a comparar los valores obtenidos del cálculo manual con Etabs:

FEEDNADIO		FRECUENTE		SERVICIO			
ESCENARIO	HOJA	ETABS	DIF	HOJA	ETABS	DIF	
Aceleración espectral en punto de desempeño, Sai (g) =	0.0340	0.0482	-29.60%	0.0609	0.0974	-37.47%	
Desplazamiento espectral en punto de desempeño, Sdi (m) =	0.0337	0.0259	23.10%	0.0648	0.0617	4.78%	
Período efectivo, Teff (seg)=	1.998	1.516	24.12%	2.070	1.882	9.09%	
Cortante en la base para punto de desempeño, Vp (T) =	94.52	139.91	-32.44%	169.55	284.01	-40.30%	
Desplazamiento del techo para punto de desempeño, Δp (m) =	0.0251	0.0387	-35.12%	0.0484	0.0913	-46.98%	
Amortiguamiento efectivo, βeff (%) =	5.00	6.29	-20.51%	7.95	12.10	-34.27%	
Ductilidad, μ =	0.617	1.280	-51.81%	1.188	2.470	-51.89%	

De la tabla comparativa puede concluirse que los valores obtenidos del cálculo manual vs. Etabs presentan diferencias porcentuales pequeñas, validando de esta forma el método CSM indicado en el ATC-40.

4.7.5.2.5 Comparativa DCM vs. CSM

Sentido X

Tabla 24. Tabla comparativa entre DCM vs CSM en sentido X para sismo frecuente y de servicio.

FEGENARIO		FRECUENTE		SERVICIO			
ESCENARIO	CSM	DCM	DIF	CSM	DCM	DIF	
Período efectivo, Teff (seg)=	1.588	1.586	0.15%	1.614	1.586	1.76%	
Cortante en la base para punto de desempeño, Vp (T) =	114.98	109.59	4.68%	233.50	230.13	1.44%	
Desplazamiento del techo para punto de desempeño, Δp (m) =	0.0341	0.0324	4.97%	0.0716	0.0705	1.48%	
Amortiguamiento efectivo, βeff (%) =	5.18	5.00	3.43%	6.05	9.90	-38.90%	
Ductilidad, μ =	1.377	1.000	27.40%	2.890	2.163	25.15%	

Fuente: (Propia,2021)

Tabla 25. Tabla comparativa entre DCM vs CSM en sentido X para sismo de diseño,

extremo y colapso.

	DISEÑO			EXTREMO		COLAPSO				
CSM	DCM	DIF	CSM	DCM	DIF	CSM	DCM	DIF		
1.688	1.599	5.26%	1.703	#¡DIV/0!	#¡DIV/0!	1.703	1.617	5.08%		
402.95	460.27	-12.45%	444.97	-10.00	102.25%	444.97	836.91	-46.83%		
0.1351	0.1584	-14.69%	0.1519	0.2230	-31.87%	0.1519	0.2804	-45.82%		
8.79	9.72	-9.62%	8.79	#¡DIV/0!	#¡DIV/0!	7.24	9.81	-26.13%		
5.456	4.859	10.94%	5.456	6.839	-20.22%	6.133	8.600	-28.69%		

Fuente: (Propia,2021)

Sentido Y

Tabla 26. Tabla comparativa entre DCM vs CSM en sentido Y para sismo frecuente y de servicio.

ESCENADIO		FRECUENTE		SERVICIO			
ESCENARIO	CSM	DCM	DIF	CSM	DCM	DIF	
Período efectivo, Teff (seg)=	1.998	1.998	0.00%	2.070	1.998	3.50%	
Cortante en la base para punto de desempeño, Vp (T) =	94.52	108.15	-12.60%	169.55	227.12	-25.35%	
Desplazamiento del techo para punto de desempeño, Δp (m) =	0.0251	0.0288	-12.60%	0.0484	0.0672	-27.95%	
Amortiguamiento efectivo, βeff (%) =	5.00	5.00	0.00%	7.95	10.23	-22.24%	
Ductilidad, μ =	0.617	1.000	-38.31%	1.188	2.210	-46.24%	

Tabla 27. Tabla comparativa entre DCM vs CSM en sentido Y para sismo de diseño, extremo y colapso.

	DISEÑO			EXTREMO		COLAPSO					
CSM	DCM	DIF	CSM	DCM	DIF	CSM	DCM	DIF			
2.202	2.031	7.77%	2.331	#¡DIV/0!	#¡DIV/0!	2.331	2.037	12.61%			
287.72	454.24	-36.66%	386.08	-10.00	102.59%	386.08	836.91	-53.87%			
0.0930	0.1752	-46.95%	0.1398	0.1936	-27.80%	0.1398	0.2804	-50.15%			
11.25	14.80	-24.01%	11.25	#¡DIV/0!	#¡DIV/0!	15.31	9.81	35.94%			
2.282	5.764	-60.41%	2.282	6.367	-64.16%	3.431	9.222	-62.80%			

4.7.6 Observaciones Primera Iteración

De los resultados obtenidos de la curva de desempeño tanto en el sentido X como en el sentido Y, se concluye que, aunque el edificio este diseñado en base a la normativa CHOC-08, este no cumple con los requerimientos mínimos de desempeño establecidos por los estándares FEMA-440, ATC-40 y ASCE 41-13, por lo que se procede a hacer una segunda iteración refinando y mejorando el modelo actual identificando los puntos de mayor problema a través de la aparición de rotulas plásticas.

4.8 Análisis Pushover Segunda Iteración Modelo 2

Con el fin de obtener una mejor curva de desempeño se hicieron modificaciones al modelo de estudio:

1.Se aumentó la dimensión de la sección de las vigas de cimentación de 50x30 a 50x60 y algunas de ellas se reubicaron para que trabajaran de mejor forma.

2.Se aumentó la sección de las columnas desde el nivel de cimentación hasta la primera losa de 50x50 a 65x65.

Cabe mencionar que, con la reubicación de las vigas de cimentación, se cambió la condición de apoyo del módulo de gradas, ya que en la primera iteración se consideró que la grada era empotrada generando un apoyo infinitamente rígido lo cual está completamente alejado de la realidad. En cambio, en la segunda iteración se modificó la ubicación de una de las vigas de cimentación para que sobre esta se apoyara directamente la grada, generando así una condición más aproximada a la realidad y ayudando de esta forma a los desplazamientos laterales de la edificación.

Figura 63.Planta de modelo refinado.

Figura 64. Planta de modelo Refinado.

Figura 65. Planta de Modelo 2, entrepiso 1

Figura 66. Planta de Modelo 2, entrepiso 2 al 4

Figura 67. Planta de modelo 2, entrepiso del 5 al 7

Figura 68. Secciones de columnas refinadas, modelo 2.

Se procede nuevamente a realizar el análisis estático y dinámico de la edificación, cumpliendo con los límites establecidos por el CHOC-08.

4.8.1 Carga Sísmica Segunda Iteración

4.8.1.2 Periodos Fundamentales de la Estructura y Método Estático

- Periodo X = 1.624s
- Periodo Y = 1.311s

	SISMO ESTATICO UBC-94														
Load Pattern Tipo	Тіро	Direccion	Periodo Fundamenta	Ct	Nivel	Nivel	Rw	z	s		Periodo	Coeficiente	Peso Usado	Cortante Basal	Ft Uasada
			ft	Superior	intenoi					sec	USauo	kgf	kgf	kgf	
EQX	Seismic	х	Program Calculated	0.07	Story7	Base	12	0.285	1	1	1.624	0.93	3372325.06	56385.28	8902.1
EQY	Seismic	Y	Program Calculated	0.07	Story7	Base	12	0.285	1	1	1.311	1.11	3372325.06	56385.28	7657.48

Fuente: (Propia,2021)

4.8.1.3 Porcentaje de Masa Participativa de la Estructura

Para el análisis se consideraron 35 modos de vibración de la estructura, alcanzando el mayor porcentaje de masa en el sentido X en el modo 1 con 70.14% de la masa total y con un período de 1.624 seg.

Case	Mode	Period sec	UX	UY	UZ	Sum UX	Sum UY	Sum UZ	RX	RY	RZ	Sum RX	Sum RY	Sum RZ
Modal	1	1.624	0.7014	0.0254	0	0.7014	0.0254	0	0.0063	0.1822	0.0677	0.0063	0.1822	0.0677
Modal	2	1.546	0.093	0.2631	0	0.7944	0.2885	0	0.066	0.0232	0.4396	0.0724	0.2054	0.5073
Modal	3	1.311	0.001	0.5058	0	0.7954	0.7942	0	0.1358	0.0003	0.2918	0.2081	0.2057	0.7992
Modal	4	0.534	0.086	0.0041	0	0.8814	0.7983	0	0.018	0.4423	0.0092	0.2261	0.648	0.8084
Modal	5	0.511	0.0132	0.0337	0	0.8945	0.832	0	0.1634	0.0693	0.0521	0.3896	0.7173	0.8604
Modal	6	0.433	0.0001	0.0664	0	0.8946	0.8985	0	0.3333	0.0006	0.0383	0.7228	0.7179	0.8987
Modal	7	0.317	0.0321	0.0009	0	0.9267	0.8994	0	0.0017	0.0451	0.0016	0.7245	0.763	0.9003
Modal	8	0.3	0.002	0.0145	0	0.9286	0.9138	0	0.0225	0.0027	0.0196	0.747	0.7657	0.9198
Modal	9	0.266	8.36E-07	0.0131	0	0.9286	0.9269	0	0.0175	4.48E-05	0.0141	0.7645	0.7658	0.9339
Modal	10	0.244	0.0129	0.0001	0	0.9416	0.927	0	0.0001	0.0458	5.11E-06	0.7646	0.8115	0.9339
Modal	11	0.225	1.18E-06	0.0173	0	0.9416	0.9443	0	0.0508	1.46E-06	4.33E-05	0.8154	0.8115	0.934
Modal	12	0.213	0.0004	0.0006	0	0.942	0.9449	0	0.0025	0.001	0.017	0.8179	0.8125	0.951
Modal	13	0.2	0.0136	4.71E-05	0	0.9556	0.945	0	0.0002	0.0419	0.0005	0.8181	0.8545	0.9515
Modal	14	0.183	0	0.0059	0	0.9556	0.9509	0	0.0182	3.88E-06	0.0001	0.8363	0.8545	0.9516
Modal	15	0.172	0.0001	0.0041	0	0.9557	0.955	0	0.0159	0.0002	0.0088	0.8522	0.8546	0.9604
Modal	16	0.168	0.0011	0.0056	0	0.9568	0.9607	0	0.0148	0.0027	0.0034	0.867	0.8574	0.9638
Modal	17	0.162	0.0083	0.0004	0	0.9651	0.9611	0	0.0008	0.0204	0.0008	0.8678	0.8777	0.9645
Modal	18	0.15	0.0003	0.0014	0	0.9654	0.9625	0	0.0042	0.0008	0.0032	0.872	0.8786	0.9678
Modal	19	0.143	0.0019	0.0026	0	0.9673	0.9651	0	0.0067	0.0061	0.0004	0.8787	0.8846	0.9682
Modal	20	0.142	0.0013	0.0024	0	0.9686	0.9675	0	0.0057	0.0039	0.0021	0.8844	0.8886	0.9703
Modal	21	0.126	4.25E-06	0.0014	0	0.9686	0.9689	0	0.0047	1.68E-05	0.0007	0.8891	0.8886	0.9711
Modal	22	0.038	0	0	0	0.9686	0.9689	0	0	1.28E-05	0	0.8891	0.8886	0.9711
Modal	23	0.038	6.53E-06	0	0	0.9686	0.9689	0	5.43E-07	1.22E-05	0	0.8891	0.8886	0.9711
Modal	24	0.038	3.20E-05	2.73E-06	0	0.9687	0.9689	0	9.32E-06	0.0001	0	0.8891	0.8887	0.9711
Modal	25	0.037	0.0002	1.94E-05	0	0.9689	0.9689	0	0.0001	0.0008	9.20E-06	0.8892	0.8895	0.9711
Modal	26	0.037	0.0004	1.28E-05	0	0.9693	0.9689	0	4.49E-05	0.0013	2.19E-05	0.8892	0.8908	0.9711
Modal	27	0.037	0.0001	4.66E-06	0	0.9694	0.969	0	1.46E-05	0.0004	5.52E-06	0.8893	0.8912	0.9711
Modal	28	0.037	0.0038	2.37E-06	0	0.9732	0.969	0	1.03E-05	0.0139	0.0002	0.8893	0.905	0.9713
Modal	29	0.036	0.0001	3.59E-05	0	0.9734	0.969	0	0.0001	0.0005	5.89E-06	0.8894	0.9055	0.9713
Modal	30	0.036	0.0008	3.76E-05	0	0.9741	0.969	0	0.0001	0.0028	3.26E-05	0.8895	0.9083	0.9714
Modal	31	0.036	0.0008	1.46E-05	0	0.9749	0.969	0	4.41E-05	0.0028	2.82E-05	0.8896	0.9111	0.9714
Modal	32	0.035	0.0004	3.22E-06	0	0.9753	0.969	0	1.08E-05	0.0015	1.25E-05	0.8896	0.9125	0.9714
Modal	33	0.035	0.0001	0	0	0.9755	0.969	0	0	0.0004	2.83E-06	0.8896	0.9129	0.9714
Modal	34	0.033	0.0001	0.0289	0	0.9755	0.998	0	0.103	0.0002	0.001	0.9926	0.9131	0.9724
Modal	35	0.032	0.0244	0.0001	0	0.9999	0.9981	0	0.0005	0.0865	0.0001	0.9931	0.9997	0.9725

Fuente: (Propia,2021)

CORTANTES	CORTANTES DINAMICOS EN X											
DICO	Casa da Carsa	Р	VX	VY	т	MX	MY					
PISO	Caso de Carga	kgf	kgf	kgf	kgf-m	kgf-m	kgf-m					
N8	SPECX	0	3671.49	307.48	43625.86	0	0					
N7	SPECX	0	15033.04	1777.26	174261.57	1383.88	16524.26					
N6	SPECX	0	23338.49	2845.5	271448.26	8778.95	79872.23					
N5	SPECX	0	29005.48	3534.05	336804.31	20956.96	178173.08					
N4	SPECX	0	33634.3	4082.63	389745.87	35591.97	294932.55					
N3	SPECX	0	38141.4	4667.88	442631.32	51907.33	426854.13					
N2	SPECX	0	42369.11	5119.87	491319.43	69994.83	573795.84					
N1	SPECX	0	42760.96	5141.59	495948.64	90113.55	737233.82					

Fuente: (Propia,2021)

CORTANTES	CORTANTES DINAMICOS EN Y												
DISO	Casa da Carga	Р	VX	VY	т	МХ	MY						
PISO	Caso de Carga	kgf	kgf	kgf	kgf-m	kgf-m	kgf-m						
N8	SPECY	0	381.55	3396.77	29932.64	0	0						
N7	SPECY	0	1795.96	13876.69	150789.72	15287.82	1717.27						
N6	SPECY	0	2858.3	22718.75	244667.84	74668.13	9621.91						
N5	SPECY	0	3523.84	28035.56	303861.1	172574.68	21906.74						
N4	SPECY	0	4066.04	32498.08	353887.04	289007.75	36373.66						
N3	SPECY	0	4634.93	37156.18	402106.14	417533.9	52458.75						
N2	SPECY	0	5114.06	41392.35	447956.83	559731.76	70316.5						
N1	SPECY	0	5141.62	41806.16	452607.71	718099.55	90241.5						

4.8.1.5 Escalamiento de Cortantes

Acorde al artículo 1.3.6.5.3 del CHOC-08 se deberá hacer una comparación entre los cortantes estáticos y dinámicos, si el cortante dinámico es menor que el cortante estático se deberá amplificar mediante un factor de escalamiento, lo que genero los siguientes resultados:

V metodo A 102031.952 kg

Sismo	Cortante (kg)	90% Cortante (kg)	Spec.X (kg)	Spec.Y (kg)	Rev.
Estatico X	56,385.28	50,746.75	42,760.96		Escalar
Estatico Y	56,385.28	50,746.75		41,806.16	Escalar

Metodo A	Cortante (kg)	80% Cortante (kg)		
Vax	102031.952	81625.56159		
Vay	102031.952	81625.56159		

FACTOR DE ESCALA							
Fex 1.476							
Fey	1.488						

Cortantes Escalados

Sentido X

DICO	Caso de	VX	VY	FX	FY	85	Fox	Foy
FISO	Carga	kgf	kgf	kgf	kgf	FE	Fex	rey
N8	SPECX	3671.49	307.48	3671.49	307.48	1.476	5,419.61	453.88
N7	SPECX	15033.04	1777.26	11361.55	1469.78	1.476	16,771.16	2,169.59
N6	SPECX	23338.49	2845.5	8305.45	1068.24	1.476	12,259.95	1,576.86
N5	SPECX	29005.48	3534.05	5666.99	688.55	1.476	8,365.23	1,016.39
N4	SPECX	33634.3	4082.63	4628.82	548.58	1.476	6,832.75	809.78
N3	SPECX	38141.4	4667.88	4507.1	585.25	1.476	6,653.08	863.91
N2	SPECX	42369.11	5119.87	4227.71	451.99	1.476	6,240.66	667.20
N1	SPECX	42760.96	5141.59	391.85	21.72	1.476	578.42	32.06

Fuente: (Propia,2021)

Sentido Y

DISO	Caso de	VX	VY	FX	FY	EE	For	Fou
PISO	Carga	kgf	kgf	kgf	kgf	FE	rex	геу
N8	SPECY	381.55	3396.77	381.55	3396.77	1.488	567.68	5,053.82
N7	SPECY	1795.96	13876.69	1414.41	10479.92	1.488	2,104.40	15,592.34
N6	SPECY	2858.3	22718.75	1062.34	8842.06	1.488	1,580.58	13,155.48
N5	SPECY	3523.84	28035.56	665.54	5316.81	1.488	990.21	7,910.51
N4	SPECY	4066.04	32498.08	542.2	4462.52	1.488	806.70	6,639.47
N3	SPECY	4634.93	37156.18	568.89	4658.1	1.488	846.41	6,930.46
N2	SPECY	5114.06	41392.35	479.13	4236.17	1.488	712.86	6,302.70
N1	SPECY	5141.62	41806.16	27.56	413.81	1.488	41.00	615.68

Fuente: (Propia,2021)

4.8.1.6 Revisión de Irregularidad Torsional

Se corrió el modelo nuevamente con las fuerzas dinámicas escaladas y posteriormente se verifico si el edificio presentaba irregularidad torsional.

Revisando los desplazamientos por piso se observó que en Y (positivo) el edificio presentaba irregularidad, por lo que se procedió a calcular los momentos torsores del mismo.

Story	Load Case/Combo	Direction	Maximum	Average	Ratio	Ах	eX (m)	eY (m)	Fx (kgf)	Fy (kgf)	Mz (kgf-m)
N8	EQYEP	Y	0.017561	0.015711	1.118	0.867618	0.3027	0.1248	381.55	3396.77	- 577.51
N7	EQYEP	Y	0.019442	0.014852	1.309	1.190007	-1.8852	0.4215	1414.41	10479.92	2,603.22
N6	EQYEP	Y	0.017677	0.013386	1.321	1.211025	-1.9054	0.4058	1062.34	8842.06	2,411.20
N5	EQYEP	Y	0.014866	0.011209	1.326	1.221496	-1.9044	0.4098	665.54	5316.81	1,527.85
N4	EQYEP	Y	0.011405	0.008591	1.328	1.223885	-1.9125	0.3848	542.2	4462.52	1,292.45
N3	EQYEP	Y	0.007508	0.005678	1.322	1.214214	-1.8365	0.3459	568.89	4658.1	1,291.46
N2	EQYEP	Y	0.003163	0.002484	1.274	1.125985	-1.231	0.1913	479.13	4236.17	685.84
N1	EQYEP	Y	0.0004	0.000327	1.224	1.039111	-0.3536	0.0851	27.56	413.81	20.03

4.8.1.7	'Revisión	de Derivas
---------	-----------	------------

DERIVAS EQ	DERIVAS EQXEP											
Nivel Core	Constant Constant	Dissetion	Max Drift	Avg Drift	Dette	СНОС	Marifferenter	Destriction DA	Marification DA			
Niver	Nivel Caso de Carga Direction	Direction	m	m	Katio	(0.03/Rw)	venncacion	Restriction PA	verification PΔ			
N8	EQXEP	Diaph D1 X	0.000461	0.00044	1.048	0.0025	Cumple	0.00167	No considerar PDELTA			
N7	EQXEP	Diaph D1 X	0.000441	0.000427	1.034	0.0025	Cumple	0.00167	No considerar PDELTA			
N6	EQXEP	Diaph D1 X	0.000646	0.000627	1.031	0.0025	Cumple	0.00167	No considerar PDELTA			
N5	EQXEP	Diaph D1 X	0.000798	0.000774	1.03	0.0025	Cumple	0.00167	No considerar PDELTA			
N4	EQXEP	Diaph D1 X	0.000914	0.000886	1.031	0.0025	Cumple	0.00167	No considerar PDELTA			
N3	EQXEP	Diaph D1 X	0.000991	0.00096	1.033	0.0025	Cumple	0.00167	No considerar PDELTA			
N2	EQXEP	Diaph D1 X	0.000668	0.000636	1.051	0.0025	Cumple	0.00167	No considerar PDELTA			
N1	EQXEP	Diaph D1 X	0.000216	0.000204	1.057	0.0025	Cumple	0.00167	No considerar PDELTA			

DERIVAS EQXEN

Nivel Caso de Carga		Direction	Max Drift	Avg Drift	Patio	СНОС	Verificacion	Postriccion DA	Verificacion PA	
NIVEI	Caso de Calga	Direction	m	m	Natio	(0.03/Rw)	venneacion	Restriction PA		
N8	EQXEN	Diaph D1 X	0.000454	0.00044	1.031	0.0025	Cumple	0.00167	No considerar PDELTA	
N7	EQXEN	Diaph D1 X	0.000492	0.000429	1.147	0.0025	Cumple	0.00167	No considerar PDELTA	
N6	EQXEN	Diaph D1 X	0.000736	0.000631	1.167	0.0025	Cumple	0.00167	No considerar PDELTA	
N5	EQXEN	Diaph D1 X	0.000913	0.00078	1.171	0.0025	Cumple	0.00167	No considerar PDELTA	
N4	EQXEN	Diaph D1 X	0.001047	0.000893	1.172	0.0025	Cumple	0.00167	No considerar PDELTA	
N3	EQXEN	Diaph D1 X	0.001137	0.000967	1.176	0.0025	Cumple	0.00167	No considerar PDELTA	
N2	EQXEN	Diaph D1 X	0.000712	0.000638	1.116	0.0025	Cumple	0.00167	No considerar PDELTA	
N1	EQXEN	Diaph D1 X	0.000231	0.000206	1.123	0.0025	Cumple	0.00167	No considerar PDELTA	

Fuente: (Propia,2021)

DERIVAS EQYEP

Nivel Case de Carga	Direction	Max Drift	Avg Drift	Patio	СНОС	Verificacion	Postriccion PA	Verification PA	
Niver	Caso de Calga	Direction	m	m	Natio		Venneacion	Restriction PA	
N8	EQYEP	Diaph D1 Y	0.000384	0.000374	1.027	0.0025	Cumple	0.00167	No considerar PDELTA
N7	EQYEP	Diaph D1 Y	0.000395	0.000327	1.208	0.0025	Cumple	0.00167	No considerar PDELTA
N6	EQYEP	Diaph D1 Y	0.00063	0.000486	1.296	0.0025	Cumple	0.00167	No considerar PDELTA
N5	EQYEP	Diaph D1 Y	0.000776	0.000585	1.327	0.0025	Cumple	0.00167	No considerar PDELTA
N4	EQYEP	Diaph D1 Y	0.000874	0.000651	1.343	0.0025	Cumple	0.00167	No considerar PDELTA
N3	EQYEP	Diaph D1 Y	0.000975	0.000714	1.366	0.0025	Cumple	0.00167	No considerar PDELTA
N2	EQYEP	Diaph D1 Y	0.000615	0.000479	1.283	0.0025	Cumple	0.00167	No considerar PDELTA
N1	EQYEP	Diaph D1 Y	0.0002	0.000163	1.226	0.0025	Cumple	0.00167	No considerar PDELTA

Fuente: (Propia,2021)

DERIVAS EQ	DERIVAS EQYEN										
Nivol	Caso do Carga	Direction	Max Drift	Avg Drift	Patio	CHOC	Varificacion	Postriccion PA	Vorificacion DA		
NIVEI	caso de carga	Direction	m	m	Natio		vermeación	Restriction PA			
N8	EQYEN	Diaph D1 Y	0.000395	0.000378	1.046	0.0025	Cumple	0.00167	No considerar PDELTA		
N7	EQYEN	Diaph D1 Y	0.000329	0.000322	1.022	0.0025	Cumple	0.00167	No considerar PDELTA		
N6	EQYEN	Diaph D1 Y	0.000515	0.000474	1.086	0.0025	Cumple	0.00167	No considerar PDELTA		
N5	EQYEN	Diaph D1 Y	0.000629	0.000568	1.108	0.0025	Cumple	0.00167	No considerar PDELTA		
N4	EQYEN	Diaph D1 Y	0.000705	0.000631	1.116	0.0025	Cumple	0.00167	No considerar PDELTA		
N3	EQYEN	Diaph D1 Y	0.000783	0.00069	1.133	0.0025	Cumple	0.00167	No considerar PDELTA		
N2	EQYEN	Diaph D1 Y	0.0005	0.000471	1.06	0.0025	Cumple	0.00167	No considerar PDELTA		
N1	EQYEN	Diaph D1 Y	0.000163	0.000163	1.003	0.0025	Cumple	0.00167	No considerar PDELTA		

Fuente: (Propia,2021)

Los desplazamientos laterales relativos del edificio no sobrepasan el límite establecido del CHOC-08 que corresponde a 0.03/Rw=0.0025 y tampoco sobrepasan la restricción P Δ por lo que no habrá que considerar dichos efectos en el modelo.

4.8.2. IRREGULARIDADES VERTICALES

4.8.2.1 Irregularidad de rigidez, piso suave

Amparándonos en el artículo 1.4.8.3 (b) del CHOC-08, la irregularidad por piso suave ya fue resuelta puesto que el análisis sísmico se hizo con el método dinámico.

4.8.2.2 Irregularidad de masa (peso)

Amparándonos en el artículo 1.4.8.3 (b) del CHOC-08, la irregularidad por piso suave ya fue resuelta puesto que el análisis sísmico se hizo con el método dinámico.

4.8.2.3 Irregularidad Geométrica Vertical

No aplica.

4.8.2.4 Discontinuidad en el plano de un elemento vertical

No aplica.

4.8.3. Irregularidades en Planta

4.8.3.1 Irregularidad Torsional

Se calcularon los momentos torsores en el análisis dinámico, por lo que la irregularidad ya fue resuelta.

4.8.3.2 Discontinuidad del Diafragma

Area Total	454.59	m2
Area Discontinuidades	22.08	m2
% Discontinuidad	0.05	%
Verificacion	Cumple	

Fuente: (Propia,2021)

4.8.8.3 Entrantes o Salientes, desalineamiento fuera del plano y sistemas no paralelos.No aplican para esta edificación.

4.9.1 Curvas de Desempeño

Una vez realizado el pushover de la edificación, se procede a obtener las curvas de desempeño del edificio, tanto en el sentido X como en el sentido Y y posteriormente ubicar los puntos de desempeño de la estructura. Los puntos de desempeño se determinan aplicando los factores de escala indicados en el ATC-40 al sismo de diseño:

- Sismo Frecuente: 0.25*sismo de diseño
- Sismo de Servicio: 0.50*sismo de diseño
- Sismo de Diseño: 0.90*sismo de diseño
- Sismo Extremo: 0.85*1.40*sismo de diseño

Sismo de Diseño X: Cortante Dinámico*Rw= 42760.96 kg * 12= 513131.52 kg

Sismo de Diseño Y: Cortante Dinámico*Rw= 41806.16 kg * 12= 501673.92 kg

Una vez calculados los factores de escala, se hará la revisión del desempeño de la estructura vía el método de desplazamiento por coeficientes (DCM) que corresponde al ATC-40 y el método de espectro capacidad (CSM) del FEMA 440.

Figura 70. Curva de desempeño sentido Y.

En el proceso de análisis se identificó la formación de las rótulas para cada punto de la curva de capacidad. La tabla a continuación muestra que en el sentido X la curva registro 16 pasos y formo 662 rotulas plásticas.

Tabla 28. Formación de rotulas plásticas en X.

PUNTO	Desplaz. (m)	A-B	B-C	C-D	D-E	>E	A-IO	IO-LS	LS-CP	>CP	TOTAL
0	0	662	0	0	0	0	662	0	0	0	662
1	0.02	662	0	0	0	0	662	0	0	0	662
2	0.029631	661	1	0	0	0	662	0	0	0	662
3	0.050004	645	17	0	0	0	662	0	0	0	662
4	0.070358	609	53	0	0	0	662	0	0	0	662
5	0.09057	574	88	0	0	0	662	0	0	0	662
6	0.111936	551	111	0	0	0	662	0	0	0	662
7	0.13284	540	122	0	0	0	662	0	0	0	662
8	0.153224	527	135	0	0	0	662	0	0	0	662
9	0.175984	516	146	0	0	0	662	0	0	0	662
10	0.192509	500	162	0	0	0	660	0	0	2	662
11	0.215602	497	165	0	0	0	658	0	0	4	662
12	0.236984	493	169	0	0	0	647	10	0	5	662
13	0.253181	489	173	0	0	0	628	28	0	6	662
14	0.254066	489	173	0	0	0	627	29	0	6	662
15	0.275718	487	175	0	0	0	625	31	0	6	662
16	0.28036	485	177	0	0	0	624	32	0	6	662

Fuente: (Propia,2021)

En Y, la curva registro 9 pasos y se formaron 662 rotulas plásticas.

Tabla 29. Formación de rotulas plásticas en Y.

PUNTO	Desplaz. (m)	A-B	B-C	C-D	D-E	>E	A-IO	IO-LS	LS-CP	>CP	TOTAL
0	0	662	0	0	0	0	662	0	0	0	662
1	0.027347	661	1	0	0	0	662	0	0	0	662
2	0.067347	582	80	0	0	0	662	0	0	0	662
3	0.107347	534	128	0	0	0	662	0	0	0	662
4	0.147347	509	153	0	0	0	661	0	0	1	662
5	0.187347	494	168	0	0	0	661	0	0	1	662
6	0.227347	463	199	0	0	0	660	1	0	1	662
7	0.267347	450	212	0	0	0	655	6	0	1	662
8	0.307347	433	229	0	0	0	615	46	0	1	662
9	0.341095	424	236	2	0	0	596	63	1	2	662

4.9.2 Método de Desplazamiento por Coeficientes

En la curva pushover de cortante vs. desplazamiento obtenida del modelo, se procede a ubicar los puntos de desempeño de la misma con el fin de determinar su posición en la curva de capacidad y concluir en qué estado estará la edificación luego del evento sísmico.

4.9.2.1 Puntos de Desempeño en X

4.9.2.1.1 Sismo Frecuente

Figura 71. Desplazamiento 0.030944m, cortante 129960.13 kg.

Fuente: (Propia,2021)

4.9.2.1.2 Sismo Servicio

Figura 72. Desplazamiento 0.06488m, cortante 267000.37 kg

4.9.2.1.3 Sismo Diseño

4.9.2.1.4 Sismo Extremo

Figura 74. Desplazamiento 0.193368m, cortante 678351.87 kg

4.9.2.1.5 Sismo Colapso

Figura 75. Desplazamiento 0.27982m, cortante 835824.30 kg

Fuente: (Propia,2021)

Figura 76. Puntos de desempeño en curva.

Fuente: (Propia,2021)

	OBJETIVOS DE DESEMPEÑO EDIFICIO DE USO ORDINARIO								
ESCENARIO	TOTALMENTE	OPERACIONAL	SEGURIDAD DE	CERCA DEL					
	FUNCIONAL	(IO)	VIDA (LS)	COLAPSO (CP)	COLAPSO				
Sismo frecuente									
Servicio									
Diseño									
Extremo									
Colonco									

Figura 77. Sectorización de puntos.

Al ubicar los puntos de desempeño en la curva de capacidad se observa que todos cumplen con el límite de desempeño, es decir que el sismo frecuente entro en la etapa totalmente funcional, el sismo de servicio entro en la etapa operacional, el sismo de diseño esta en seguridad de vidas y el sismo extremo está cerca del colapso. Lo que indica que el edificio es aceptable en el sentido X y al momento del evento sísmico cumplirá con los requerimientos establecido por el ATC-40 y FEMA-440 y el propósito general del diseño estructural que es el salvaguardar las vidas humanas al momento de un evento sísmico.

4.9.2.2 Verificación Manual DCM

4.9.2.2.1 Características Dinámicas de la Estructura Del programa se obtienen las masas por nivel:

Tabla 30. Masas por nivel

Nivel	UX	UZ	
	kgf-s²/m	kgf-s²/m	kgf-s²/m
N8	5799.240283	5799.240283	0
N7	44714.01826	44714.01826	0
N6	55552.47639	55552.47639	0
N5	55411.83834	55411.83834	0
N4	55456.1245	55456.1245	0
N3	55538.97744	55538.97744	0
N2	56520.43476	56520.43476	0
N1	14888.33708	14888.33708	0
Sumas =	343,881.	45 kgf-s²/m	
W =	3,372,445.	35 Kg	

Fuente: (Propia,2021)

La relación de períodos está en base al período del primer modo de vibración. Las formas modales las calculó el programa y se normalizaron de manera que el valor en el nivel más alto sea 1.00 en cada modo de vibración.

El factor de participación modal se encuentra por:

$$PF_{Rm} = \left[\frac{\sum_{i=1}^{N} (W_i \phi_i)/g}{\sum_{i=1}^{N} (W_i \phi_i^2)/g}\right]$$
(36)

Y el coeficiente de masa modal efectiva:

$$\alpha_m = \frac{[\sum_{i=1}^{N} (W_i \phi_i)/g]^2}{[\sum_{i=1}^{N} W_i/g][\sum_{i=1}^{N} (W_i \phi_i^2)/g]}$$
(37)

109

Donde, N es el número de niveles; W_i es el peso de cada nivel que participó en el análisis; ϕ_i es la forma modal del primer modo en el nivel *i* y *g* es el valor de la aceleración de la gravedad.

	FI F) / (m)	l	FORMAS MODALES NORMALIZADAS							
INIVEL	ELEV. (M)	Ø ₁ (m)	Ø₂ (m)	Ø₃ (m)	Ø₄ (m)	Ø₅ (m)				
N8	33.50	1.00000	1.00000	1.00000	-1.45373	1.00000				
N7	29.00	0.95890	0.95046	0.90217	-1.00567	0.66397				
N6	24.50	0.88917	0.88479	0.83696	-0.42446	0.28340				
N5	20.00	0.76671	0.76267	0.67391	0.35269	-0.22429				
N4	15.50	0.59485	0.59677	0.51087	0.93296	-0.60972				
N3	11.00	0.38688	0.39286	0.31522	1.00000	-0.66640				
N2	6.50	0.16231	0.17051	0.13043	0.53022	-0.36842				
N1	2.00	0.01993	0.02189	0.02174	0.06988	-0.04939				
Base	0.00	0.00000	0.00000	0.00000	0.00000	0.00000				

Tabla 31. Formas modales normalizadas.

Fuente: (Propia,2021)

Figura 78. Modos de vibración y porcentaje de masa participativa.

Fuente: (Propia,2021)

Teniendo el período, por medio del espectro se encuentra la pseudo aceleración S_{am} de cada modo de vibración, la cual también es reportada por el programa Etabs 2019. Se normalizó la forma modal de manera que $[\sum_{i=1}^{N} (W_i \phi_i^2)/g] = 1.00$ y las aceleraciones por piso se encontraron por:

$$a_{im} = PF_m \phi_{im} S_{am} \tag{38}$$

La fuerza total en cada modo de vibración se encuentra por:

$$V_m = \alpha_m S_{am} W \tag{39}$$

Donde W es el peso total que participó en el análisis dinámico.
NIN (51	m (Kg-seg²/m)		М	ODO 1	
NIVEL		Ø1	mØ1	mØ ₁ ²	a ₁ (g)
N8	5.80	0.0781	0.4532	0.0354	0.235
N7	44.71	0.0749	3.3507	0.2511	0.225
N6	55.55	0.0695	3.8602	0.2682	0.209
N5	55.41	0.0599	3.3201	0.1989	0.180
N4	55.46	0.0465	2.5780	0.1198	0.140
N3	55.54	0.0302	1.6792	0.0508	0.091
N2	56.52	0.0127	0.7169	0.0091	0.038
N1	14.89	0.0016	0.0232	0.0000	0.005
Base	0.00	0.0000	0.0000	0.0000	0.000
Sumas:	343.88		15.9815	0.9334	
Facto	or de normalización:		0.0781		
	Sa (g) =		0.1755		
	PFr =		17.1215		
	α =		0.7014		
	arf =		3.0047		
	Vm (T) =		415.12		
	Vm/W =		0.1231		

Tabla 32. Propiedades del primer modo de vibración.

Propiedades del primer modo de vibración.

Fuente: (Propia,2021)

Tabla 33. Propiedades del segundo modo de vibración

AUD (51			М	DDO 2			
NIVEL	m (Kg-seg ⁻ /m)	Ø ₂	mØ₂	mØ2 ²	a ₂ (g)		
N8	5.80	0.0783	0.4542	0.0356	0.248		
N7	44.71	0.0744	3.3282	0.2477	0.236		
N6	55.55	0.0693	3.8493	0.2667	0.220		
N5	55.41	0.0597	3.3096	0.1977	0.189		
N4	55.46	0.0467	2.5918	0.1211	0.148		
N3	55.54	0.0308	1.7087	0.0526	0.098		
N2	56.52	0.0134	0.7547	0.0101	0.042		
N1	14.89	0.0017	0.0255	0.0000	0.005		
Base	0.00	0.0000	0.0000	0.0000	0.000		
Sumas:	343.88		16.0221	0.9315			
Facto	or de normalización:		0	.0783			
	Sa (g) =		0	.1843			
	PFr =		17	.1999			
	α =		0	.0930			
	arf =	3.1707					
	Vm (T) =			57.82			
	Vm/W =		0	.0171			

AUD (51	··· 2/)		MOI	00 3				
NIVEL	m (Kg-seg ⁻ /m)	Ø ₃	mØ₃	mØ ₃ ²	a ₃ (g)			
N8	5.80	0.0845	0.4903	0.0414	0.314			
N7	44.71	0.0763	3.4103	0.2601	0.283			
N6	55.55	0.0708	3.9306	0.2781	0.262			
N5	55.41	0.0570	3.1569	0.1799	0.211			
N4	55.46	0.0432	2.3951	0.1034	0.160			
N3	55.54	0.0266	1.4800	0.0394	0.099			
N2	56.52	0.0110	0.6232	0.0069	0.041			
N1	14.89	0.0018	0.0274	0.0001	0.007			
Base	0.00	0.0000	0.0000	0.0000	0.000			
Sumas:	343.88		15.5138	0.9093				
Facto	or de normalización:		0	.0845				
	Sa (g) =		0	.2174				
	PFr =		17	.0610				
	α =		0	.0001				
	arf =		3.7089					
	Vm (T) =			0.07				
	Vm/W =		0	.0000				

Tabla 34. Propiedades del tercer modo de vibración.

Fuente: (Propia,2021)

4.9.2.2.2 Curva de Capacidad

Fuente: (Propia,2021)

Los puntos de la curva son los mostrados en la siguiente tabla, con los datos fue posible identificar el límite elástico del edificio en el punto 3, donde se observa un cambio de pendiente en la curva de capacidad.

PUNTO	Desplaz. (m)	V (Kg)	V (T)	Pendiente
0	0	0	0.00	
1	0.02	84058.18	84.06	4,202.9090
2	0.029631	124535.27	124.54	4,202.7920
3	0.050004	208723.34	208.72	4,132.3354
4	0.070358	288462.05	288.46	3,917.5941
5	0.09057	359859.32	359.86	3,532.4198
6	0.111936	429933.83	429.93	3,279.7206
7	0.13284	496272.3	496.27	3,173.4821
8	0.153224	560012.18	560.01	3,126.9564
9	0.175984	628812.62	628.81	3,022.8664
10	0.192509	676755.08	676.76	2,901.2079
11	0.215602	719699.58	719.70	1,859.6328
12	0.236984	760848.47	760.85	1,924.4640
13	0.253181	790262.71	790.26	1,816.0301
14	0.254066	790644.97	790.64	431.9322
15	0.275718	827567.4	827.57	1,705.2665
16	0.28036	836912.27	836.91	2,013.1129

Tabla 35. Puntos para curva de capacidad.

Fuente: (Propia,2021)

4.9.2.2.3 Procedimiento DCM en X

Se evaluaran 5 puntos de desempeño, el sismo frecuente (0.238 del evento de diseño); El sismo de servicio (0.50 del evento de diseño); el de diseño (cortante dinámico); El evento extremo (1.50 del evento de diseño) y el punto de colapso.

La rigidez inicial de la estructura, es función del límite elástico

$$K_i = \frac{V_y}{\Delta_y} \tag{40}$$

Entre el origen y V_y^i del punto investigado, la representación bilineal debe de interceptar la curva de capacidad para la ordenada 0.60 V_y^i con la que se encuentra la rigidez efectiva de la estructura.

$$K_{eff}^{i} = \frac{0.60V_{y}^{i}}{\Delta_{0.6}^{i}}$$
(41)

Donde *i* es el número del punto. El desplazamiento en la cedencia, será entonces:

$$\Delta_{y}^{i} = \frac{V_{y}^{i}}{K_{eff}^{i}} \tag{42}$$

Por interpolación lineal en la curva de desempeño, para cada cortante se encuentra el desplazamiento correspondiente. Para efectos comparativos, se muestra los valores esperados (calculados con la descripción anterior) y los entregados por el programa.

ECCENIADIO	MANUAL		ET/	ABS	DIFERENCIA	
ESCENARIO	V _{BASE} (T)	Δ_{TECHO} (m)	V _{BASE} (T)	Δ_{TECHO} (m)	V _{BASE} (T)	Δ_{TECHO} (m)
Sismo frecuente:	122.17	0.0291	129.96	0.0309	-5.99%	-6.04%
Sismo de servicio:	256.57	0.0622	267.00	0.0649	-3.91%	-4.10%
Sismo de diseño:	513.13	0.1382	484.54	0.1291	5.57%	6.60%
Sismo extremo:	769.70	0.2419	678.35	0.1934	11.87%	20.04%
Sismo colapso:	836.91	0.2804	835.82	0.2798	0.13%	0.20%

Tabla 36. Puntos de desempeño de la estructura.

Fuente: (Propia,2021)

En el manual del programa se lee que encuentra los puntos de desempeño de acuerdo con ATC-40 (Applied Technology Council, 2005) para lo cual, los desplazamientos de cada punto de desempeño se calculan por:

$$\Delta_i = C_0 C_1 C_2 S_a \frac{T_e^2 g}{4\pi^2} \tag{43}$$

Donde C_0 es el factor de modificación que relaciona el desplazamiento espectral de un sistema equivalente de un grado de libertad al desplazamiento en el techo de un sistema de múltiples grados de libertad; C_1 es el factor de modificación que relaciona el desplazamiento inelástico máximo esperado a los desplazamientos calculados por la respuesta lineal elástica; C_2 es el factor de modificación que ajusta la degradación cíclica; S_a es la aceleración espectral y T_e es el período fundamental efectivo del edificio. Las aceleraciones espectrales y los desplazamientos espectrales para cada escenario se calcularon por medio de:

$$S_a = \frac{V/W}{\alpha_1} \tag{44}$$

$$S_d = \frac{\Delta_N}{PF_1 \phi_{N,1}} \tag{45}$$

Donde PF_1 es el factor de participación modal encontrado por medio de (2); α_1 es el coeficiente de masa modal efectiva encontrado por medio de (3) y $\emptyset_{N,1}$ es el desplazamiento modal y para el primer modo de vibración y al nivel del techo, *N* es el nivel más alto (techo) de la estructura

Sin embargo, en este trabajo, los desplazamientos en el techo se calcularon en el proceso iterativo antes descrito. La demanda de ductilidad se encontró por medio de la ecuación (1) y el amortiguamiento por medio de:

$$\beta_{eq} = \frac{4[(S_{ay}S_{di}) - (S_{dy}S_{ai})]}{\frac{4\pi S_{ai}S_{di}}{2}} + 0.05$$
(46)

Lo cual es una representación del amortiguamiento histerético que se suma al amortiguamiento viscoso de la estructura y donde S_{ay} y S_{dy} son la aceleración y el desplazamiento espectral en el límite elástico respectivamente y S_{ai} y S_{di} son la aceleración y el desplazamiento espectral de cada escenario.

ESCENARIO	βeq (%)	μ	Te (seg
Sismo frecuente:	5.91	1.45	1.386
Sismo de servicio:	6.24	3.11	1.386
Sismo de diseño:	8.96	6.91	1.389
Sismo extremo:	9.70	12.09	1.40
Sismo colapso:	9.81	14.02	1.413

Tabla 37. Aceleraciones y desplazamientos espectrales en el punto de desempeño.

Fuente: (Propia,2021)

El período efectivo T_e se calculó por medio de:

$$T_e = \sqrt{\frac{4S_d \pi^2}{S_a/g}} \tag{47}$$

Es importante observar que una vez que la estructura de desplaza más allá de su límite elástico, el amortiguamiento aumenta, así como también aumenta el período de la estructura como consecuencia del agrietamiento y la plastificación de algunos puntos de la estructura.

La curva de capacidad se sectorizó de acuerdo con los objetivos de Visión 2000.

Figura 80. Curva de Capacidad de la estructura.

Figura 81. Sectorización de puntos.

Fuente: (Propia,2021)

Puede notarse en la gráfica que se cumple con todos los puntos de desempeño y esto se refleja en la matriz de objetivos que cumple la diagonal de forma perfecta, es decir, que luego del sismo frecuente la estructura quedara totalmente funcional, para el sismo de servicio se encontrara en el rango operacional (IO), para el evento de diseño la estructura quedara en seguridad de vida (LS) y para el evento extremo la estructura quedara cerca del colapso (CP) pero permitiendo salvaguardar la vida de las personas.

4.9.2.3 Puntos de Desempeño en Y

4.9.2.3.1 Sismo Frecuente

Figura 82. Desplazamiento 0.031927, cortante 145967.85 kg.

Fuente: (Propia,2021)

Figura 83. Desplazamiento 0.066794m, cortante 278395.02 kg

4.9.2.3.3 Sismo Diseño

Figura 84. Desplazamiento 0.133265m, cortante 455115.78 kg

Figura 85. Desplazamiento 0.203399m, cortante 621132.56 kg

4.9.2.3.5 Sismo Colapso

Figura 86. Desplazamiento 0.339453m, cortante 842151.08 kg.

4.9.2.3.6 Desempeño Estructural de la Edificación

OBJETIVOS DE DESEMPEÑO EDIFICIO DE USO ORDINARIO										
FRAFNARIA	TOTALMENTE	OPERACIONAL	SEGURIDAD DE	CERCA DEL						
ESCENARIO	FUNCIONAL	(IO)	VIDA (LS)	COLAPSO (CP)	COLAPSO					
Sismo frecuente										
Servicio										
Diseño										
Extremo										
Colapso										

Figura 88. Sectorización de puntos.

Fuente: (Propia,2021)

Al ubicar los puntos de desempeño en la curva de capacidad se observa que todos cumplen con los requerimientos establecidos por ATC-40 y FEMA-440. Puede notarse en la gráfica que se cumple con todos los puntos de desempeño y esto se refleja en la matriz de objetivos que cumple la diagonal de forma perfecta, es decir, que luego del sismo frecuente la estructura quedara totalmente funcional, para el sismo de servicio se encontrara en el rango operacional (IO), para el evento de diseño la estructura quedara en seguridad de vida (LS) y para el evento extremo la estructura quedara cerca del colapso (CP) pero permitiendo salvaguardar la vida de las personas.

4.9.2.3.7 Características Dinámicas de la Estructura

NUVEL			FORMAS MOD	ALES NORMA		
INIVEL	ELEV. (m)	Ø ₁ (m)	Ø ₂ (m)	Ø₃ (m)	Ø₄ (m)	Ø₅ (m)
N8	33.50	0.59660	0.69118	1.00000	-0.72537	-0.91402
N7	29.00	1.00000	1.00000	0.77620	-0.97275	-0.99928
N6	24.50	0.92569	0.92447	0.71226	-0.44864	-0.45448
N5	20.00	0.79618	0.79278	0.60785	0.32285	0.32731
N4	15.50	0.61571	0.61430	0.46904	0.92872	0.92919
N3	11.00	0.39703	0.39906	0.30919	1.00000	1.00000
N2	6.50	0.15924	0.16310	0.13800	0.50314	0.51228
N1	2.00	0.01911	0.01939	0.01943	0.06289	0.06503
Base	0.00	0.00000	0.00000	0.00000	0.00000	0.00000

Tabla 38. Formas modales normalizadas en Y.

Figura 89. Modos de vibración y porcentaje de masa participativa.

Teniendo el período, por medio del espectro se encuentra la pseudo aceleración S_{am} de cada modo de vibración, la cual también es reportada por el programa Etabs 2019.

Se normalizó la forma modal de manera que $[\sum_{i=1}^{N} (W_i \phi_i^2)/g] = 1.00$ y las aceleraciones por piso se encontraron por:

$$a_{im} = PF_m \phi_{im} S_{am} \tag{48}$$

La fuerza total en cada modo de vibración se encuentra por:

$$V_m = \alpha_m S_{am} W \tag{49}$$

Donde W es el peso total que participó en el análisis dinámico.

Tabla 39. Propiedades del primer modo de vibración.

	24.5				
NIVEL	m (Kg-seg ⁻ /m)	Ø1	mØ1	mØ1 ²	a1 (g)
N8	5.80	0.0466	0.2704	0.0126	0.136
N7	44.71	0.0781	3.4943	0.2731	0.228
N6	55.55	0.0723	4.0188	0.2907	0.211
N5	55.41	0.0622	3.4477	0.2145	0.182
N4	55.46	0.0481	2.6684	0.1284	0.141
N3	55.54	0.0310	1.7232	0.0535	0.091
N2	56.52	0.0124	0.7033	0.0088	0.036
N1	14.89	0.0015	0.0222	0.0000	0.004
Base	0.00	0.0000	0.0000	0.0000	0.000
Sumas:	343.88		16.3484	0.9816	
	Factor de normalización:		0.0781		
	Sa (g) =		0.1755		
	PFr =		16.6553		
	α =		0.7014		
	arf =		2.9229		
	Vm (T) =		415.12		
	Vm/W =		0.1231		

Fuente: (Propia,2021)

Tabla 40.	Pro	piedades	del	segundo	modo	de	vibración

AUX / F1			м	DDO 2			
NIVEL	m (Kg-seg ⁻ /m)	Ø ₂	mØ₂	mØ2 ²	a ₂ (g)		
N8	5.80	0.0541	0.3139	0.0170	0.166		
N7	44.71	0.0783	3.5017	0.2742	0.240		
N6	55.55	0.0724	4.0219	0.2912	0.222		
N5	55.41	0.0621	3.4403	0.2136	0.190		
N4	55.46	0.0481	2.6679	0.1283	0.147		
N3	55.54	0.0313	1.7357	0.0542	0.096		
N2	56.52	0.0128	0.7219	0.0092	0.039		
N1	14.89	0.0015	0.0226	0.0000	0.005		
Base	0.00	0.0000	0.0000	0.0000	0.000		
Sumas:	343.88		16.4260	0.9878			
	Factor de normalización:		0	.0783			
	Sa (g) =		0	.1843			
	PFr =		16	.6281			
	α =		0.0930				
	arf =	arf = 3.0653					
	Vm (T) =			57.82			
	Vm/W =		0	.0171			

Tabla 41. Propiedades del tercer modo de vibración.

NID (51			MOI	00 3		
NIVEL	m (Kg-seg ⁻ /m)	Ø ₃	mØ₃	mØ ₃ ²	a ₃ (g)	
N8	5.80	0.0845	0.4903	0.0414	0.359	
N7	44.71	0.0656	2.9341	0.1925	0.279	
N6	55.55	0.0602	3.3450	0.2014	0.256	
N5	55.41	0.0514	2.8475	0.1463	0.218	
N4	55.46	0.0397	2.1990	0.0872	0.168	
N3	55.54	0.0261	1.4517	0.0379	0.111	
N2	56.52	0.0117	0.6594	0.0077	0.050	
N1	14.89	0.0016	0.0244	0.0000	0.007	
Base	0.00	0.0000	0.0000	0.0000	0.000	
Sumas:	343.88		13.9513	0.7146		
	Factor de normalización:		0	.0845		
	Sa (g) =		0	.2174		
	PFr =		19	.5235		
	α =	0.0001				
	arf =	arf = 4.2442				
	Vm (T) =			0.07		
	Vm/W =		0	.0000		

Los puntos de la curva son los mostrados en la siguiente tabla, con los datos fue posible identificar el límite elástico del edificio en el punto 1, donde se observa un cambio de pendiente en la curva de capacidad.

PUNTO	Desplaz. (m)	V (Kg)	V (T)	Pendiente
0	0	0	0.00	
1	0.027347	128572.49	128.57	4,701.5208
2	0.067347	280494.42	280.49	3,798.0483
3	0.107347	391003.11	391.00	2,762.7173
4	0.147347	489951.77	489.95	2,473.7165
5	0.187347	585258.3	585.26	2,382.6633
6	0.227347	674654.02	674.65	2,234.8930
7	0.267347	734557.05	734.56	1,497.5758
8	0.307347	790484.89	790.48	1,398.1960
9	0.341095	844793.9	844.79	1,609.2512

Tabla 42. Puntos para curva de capacidad.

4.9.2.3.8 Procedimiento DCM en Y

La rigidez inicial de la estructura es función del límite elástico

$$K_i = \frac{V_y}{\Delta_y} \tag{50}$$

Fuente: (Propia,2021)

Entre el origen y V_y^i del punto investigado, la representación bilineal debe de interceptar la curva de capacidad para la ordenada 0.60 V_y^i con la que se encuentra la rigidez efectiva de la estructura.

$$K_{eff}^{i} = \frac{0.60V_{y}^{i}}{\Delta_{0.6}^{i}}$$
(51)

Donde *i* es el número del punto. El desplazamiento en la cedencia, será entonces:

$$\Delta_y^i = \frac{V_y^i}{K_{eff}^i} \tag{52}$$

Por interpolación lineal en la curva de desempeño, para cada cortante se encuentra el desplazamiento correspondiente. Para efectos comparativos, se muestra los valores esperados (calculados con la descripción anterior) y los entregados por el programa.

ESCENARIO	MANUAL		ETA	ABS	DIFERENCIA		
	V _{BASE} (T)	Δ_{TECHO} (m)	V _{BASE} (T)	Δ_{TECHO} (m)	V _{BASE} (T)	Δ_{TECHO} (m)	
Sismo frecuente:	119.45	0.0254	145.97	0.0319	-18.17%	-20.41%	
Sismo de servicio:	250.84	0.0595	278.40	0.0668	-9.90%	-10.86%	
Sismo de diseño:	501.67	0.1523	455.12	0.1333	9.28%	12.48%	
Sismo extremo:	752.51	0.2802	621.13	0.2034	17.46%	27.41%	
Sismo colapso:	844.79	0.3411	842.15	0.3395	0.31%	0.48%	

Tabla 43. Puntos de desempeño de la estructura.

Fuente:	(Prop	pia,20)21)

En el manual del programa se lee que encuentra los puntos de desempeño de acuerdo con ATC-40 (Applied Technology Council, 2005) para lo cual, los desplazamientos de cada punto de desempeño se calculan por:

$$\Delta_i = C_0 C_1 C_2 S_a \frac{T_e^2 g}{4\pi^2}$$
(53)

Donde C_0 es el factor de modificación que relaciona el desplazamiento espectral de un sistema equivalente de un grado de libertad al desplazamiento en el techo de un sistema de múltiples grados de libertad; C_1 es el factor de modificación que relaciona el desplazamiento inelástico máximo esperado a los desplazamientos calculados por la respuesta lineal elástica; C_2 es el factor de modificación que ajusta la degradación cíclica; S_a es la aceleración espectral y T_e es el

período fundamental efectivo del edificio. Las aceleraciones espectrales y los desplazamientos espectrales para cada escenario se calcularon por medio de:

$$S_a = \frac{V/W}{\alpha_1} \tag{54}$$

$$S_d = \frac{\Delta_N}{PF_1 \phi_{N,1}} \tag{55}$$

Donde PF_1 es el factor de participación modal encontrado por medio de (2); α_1 es el coeficiente de masa modal efectiva encontrado por medio de (3) y $\emptyset_{N,1}$ es el desplazamiento modal (véase ecuación 54), todos para el primer modo de vibración y al nivel del techo, *N* es el nivel más alto (techo) de la estructura

Sin embargo, en este trabajo, los desplazamientos en el techo se calcularon en el proceso iterativo antes descrito. La demanda de ductilidad se encontró por medio de la ecuación (1) y el amortiguamiento por medio de:

$$\beta_{eq} = \frac{4[(S_{ay}S_{di}) - (S_{dy}S_{ai})]}{\frac{4\pi S_{ai}S_{di}}{2}} + 0.05$$
(56)

Lo cual es una representación del amortiguamiento histerético que se suma al amortiguamiento viscoso de la estructura y donde S_{ay} y S_{dy} son la aceleración y el desplazamiento espectral en el límite elástico respectivamente y S_{ai} y S_{di} son la aceleración y el desplazamiento espectral de cada escenario.

ESCENARIO	βeq (%)	μ	Te (seg
Sismo frecuente:	5.00	1.00	1.716
Sismo de servicio:	10.02	2.18	1.716
Sismo de diseño:	14.31	5.58	1.744
Sismo extremo:	16.23	10.26	1.80
Sismo colapso:	17.83	12.49	1.815

Tabla 44. Aceleraciones y desplazamientos espectrales en el punto de desempeño.

El período efectivo T_e se calculó por medio de:

$$T_e = \sqrt{\frac{4S_d \pi^2}{S_a/g}} \tag{57}$$

Es importante observar que una vez que la estructura de desplaza más allá de su límite elástico, el amortiguamiento aumenta, así como también aumenta el período de la estructura como consecuencia del agrietamiento y la plastificación de algunos puntos de la estructura.

La curva de capacidad se sectorizó de acuerdo con los objetivos de Visión 2000.

Figura 91. Sectorización de puntos de desempeño en curva.

Fuente: (Propia,2021)

	OBJETIVOS DE DESEMPEÑO EDIFICIO DE USO ORDINARIO					
ESCENARIO	TOTALMENTE FUNCIONAL	OPERACIONAL (IO)	SEGURIDAD DE VIDA (LS)	CERCA DEL COLAPSO (CP)	COLAPSO	
Sismo frecuente						
Servicio						
Diseño						
Extremo						
Colapso						

Figura 92. Sectorización de puntos.

Puede notarse en la gráfica que se cumple con todos los puntos de desempeño y esto se refleja en la matriz de objetivos que cumple la diagonal de forma perfecta, es decir, que luego del sismo frecuente la estructura quedara totalmente funcional, para el sismo de servicio se encontrara en el rango operacional (IO), para el evento de diseño la estructura quedara en seguridad de vida (LS) y para el evento extremo la estructura quedara cerca del colapso (CP) pero permitiendo salvaguardar la vida de las personas.

4.9.3 Método de Espectro Capacidad

El método consiste en convertir el espectro de respuesta en aceleraciones espectrales en función de desplazamientos espectrales y superponer en esa gráfica, la curva de capacidad la cual también deberá ser convertida para el mismo formato.

Al igual que en el método DCM, se procederá a ubicar los puntos de desempeño estructural de la edificación.

4.9.3.1Puntos de Desempeño en X

4.9.3.1.1 Sismo Frecuente

Figura 93. Desplazamiento 0.031462m, cortante 132102.24 kg.

4.9.3.1.2 Sismo Servicio

Figura 94. Desplazamiento 0.068993m, cortante 283113.11 kg

Fuente: (Propia,2021)

4.9.3.1.3 Sismo Diseño

Figura 95. Desplazamiento 0.150738m, cortante 552237.87 kg

4.9.3.1.4 Sismo Extremo

Figura 96. Desplazamiento 0.215141m, cortante 718842.65 kg

Fuente: (Propia,2021)

4.9.3.1.5 Sismo Colapso

Figura 97. Desplazamiento 0.279696m, cortante 835575.23 kg

4.9.3.1.6 Desempeño Estructural de la Edificación

Figura 98. Sectorización de puntos de desempeño en curva.

La sectorización de puntos en la gráfica indica que se está cumpliendo con los objetivos de desempeño según la metodología del FEMA.

4.9.3.1.6 Verificación Manual CSM en X

Para convertir el espectro elástico de aceleraciones normalizado (Aceleración en función del período), usamos la siguiente expresión (Applied Technology Council, 2005):

$$S_{de} = \frac{T^2}{4\pi^2} S_{ae} \tag{57}$$

Y para la curva de capacidad:

$$S_{ai} = \frac{V_i / W}{\alpha_1} \tag{58}$$

$$S_{di} = \frac{\Delta_i}{PF_1 \cdot \phi_{N,1}} \tag{59}$$

Con lo que obtenemos los siguientes puntos:

PUNTO	Desplaz. (m)	V (Kg)	Sd (m)	Sa (g)	T (seg)
0	0	0.00	0	0	
1	0.02	84.06	0.01494744	0.03132452	1.3860
2	0.029631	124.54	0.02214538	0.04640842	1.3860
3	0.050004	208.72	0.03737159	0.07778134	1.3907
4	0.070358	288.46	0.05258361	0.10749619	1.4033
5	0.09057	359.86	0.06768949	0.13410258	1.4255
6	0.111936	429.93	0.08365784	0.16021605	1.4498
7	0.13284	496.27	0.09928091	0.18493726	1.4701
8	0.153224	560.01	0.11451534	0.20869011	1.4863
9	0.175984	628.81	0.13152553	0.23432879	1.5032
10	0.192509	676.76	0.14387586	0.25219468	1.5154
11	0.215602	719.70	0.16113492	0.26819807	1.5552
12	0.236984	760.85	0.17711523	0.28353232	1.5858
13	0.253181	790.26	0.18922042	0.29449362	1.6083
14	0.254066	790.64	0.18988184	0.29463607	1.6107
15	0.275718	827.57	0.20606394	0.30839531	1.6401
16	0.28036	836.91	0.20953324	0.3118777	1.6445

Tabla 45. Conversión de la curva de capacidad a formato AD.

Para cada punto de desempeño es necesario desarrollar una representación bilineal tal y como se hizo con el método de los Coeficientes de desplazamientos (CSM) para encontrar las coordenadas del límite elástico con las cuales poder calcular el amortiguamiento equivalente (β_{eq}) y con este, encontrar los factores de reducción espectral SR_A y SR_V .

$$SR_A = \frac{3.21 - Ln(\beta_{eq})}{2.12} \tag{60}$$

$$SR_V = \frac{2.31 - Ln(\beta_{eq})}{1.65} \tag{61}$$

El objetivo es obtener un espectro de demanda reducido como consecuencia del aumento en el período fundamental del edificio (T_e) y del amortiguamiento efectivo (β_{eq}) . El espectro de respuesta está compuesto por 3 zonas, a saber: Entre el origen y $T = T_a$ es la zona de desplazamientos constantes; para $T_a \leq T \leq T_b$ la zona de aceleración constante y para $T > T_b$ la zona de velocidad constante.

El factor SR_A (19) se aplica para la zona de aceleración constante y SR_V (20) para la zona de velocidad constante.

Con el espectro reducido y escalado para el punto de desempeño, se superponen las curvas y en su intersección se encuentra el punto de desempeño. La intersección se encontró por medio de un programa desarrollado por el autor que consiste en un procedimiento iterativo.

La siguiente grafica muestra la superposición de ambas curvas, siendo la roja la correspondiente al espectro de demanda reducido, la curva en negro al espectro elástico escalado para el nivel de desempeño buscado, la curva verde es el espectro de capacidad y la café es la representación bilineal para el punto de desempeño buscado; El punto dentro de la curva de representación bilineal, representa el límite elástico para la estructura con el nivel de desempeño buscado.

Figura 99. Punto de desempeño.

Fuente: (Propia,2021)

Se comparan los valores encontrados del cálculo manual con los obtenidos con Etabs:

ESCENARIO	FRECUENTE	SERVICIO	DISEÑO	EXTREMO	COLAPSO
Aceleración espectral en punto de desempeño, Sai (g) =	0.0485	0.0981	0.1694	0.2380	0.3118
Desplazamiento espectral en punto de desempeño, Sdi (m) =	0.0232	0.0478	0.0895	0.1340	0.2095
Período efectivo, Teff (seg)=	1.386	1.400	1.458	1.506	1.644
Cortante en la base para punto de desempeño, Vp (T) =	130.22	263.21	454.67	638.56	836.79
Desplazamiento del techo para punto de desempeño, Δp (m) =	0.0310	0.0639	0.1197	0.1793	0.2803
Amortiguamiento efectivo, βeff (%) =	5.03	5.78	8.55	9.60	15.49
Ductilidad, μ =	1.400	2.886	5.407	8.098	12.657

Tabla 46. Puntos de desempeño encontramos método CSM.

ruente: (Propia,2021)	Fuente:	(Proj	pia,	202	1)
-----------------------	---------	-------	------	-----	----

Figura 100. Sectorización de puntos de desempeño en curva. Fuente: (Propia,2021)

Podemos observar que en todos los sismos se cumple con el objetivo de desempeño según la metodología FEMA-440. Al ubicar los puntos de desempeño en la curva de capacidad se observa que todos cumplen con los requerimientos establecidos por ATC-40 y FEMA-440. Puede notarse en la gráfica que se cumple con todos los puntos de desempeño y esto se refleja en la matriz de objetivos que cumple la diagonal de forma perfecta, es decir, que luego del sismo frecuente la estructura quedara totalmente funcional, para el sismo de servicio se encontrara en el rango operacional (IO), para el evento de diseño la estructura quedara en seguridad de vida (LS) y para el evento extremo la estructura quedara cerca del colapso (CP) pero permitiendo salvaguardar la vida de las personas.

Procedemos a comparar los valores obtenidos del cálculo manual con Etabs:

Tabla 47. Comparación entre método Manual VS. Etabs.

ESCENADIO	FRECUENTE		SERVICIO			DISEÑO			
ESCENARIO	HOJA	ETABS	DIF	HOJA	ETABS	DIF	HOJA	ETABS	DIF
Aceleración espectral en punto de desempeño, Sai (g) =	0.0485	0.0471	3.05%	0.0981	0.1009	-2.79%	0.1694	0.1946	-12.93%
Desplazamiento espectral en punto de desempeño, Sdi (m) =	0.0232	0.0247	-6.31%	0.0478	0.0544	-12.18%	0.0895	0.1195	-25.12%
Período efectivo, Teff (seg)=	1.386	1.465	-5.36%	1.400	1.567	-10.65%	1.458	1.805	-19.22%
Cortante en la base para punto de desempeño, Vp (T) =	130.22	132.10	-1.42%	263.21	283.11	-7.03%	454.67	552.24	-17.67%
Desplazamiento del techo para punto de desempeño, Δp (m) =	0.0310	0.0315	-1.44%	0.0639	0.0690	-7.36%	0.1197	0.1507	-20.55%
Amortiguamiento efectivo, βeff (%) =	5.03	5.18	-2.88%	5.78	6.85	-15.60%	8.55	10.57	-19.09%
Ductilidad, μ =	1.400	1.062	24.16%	2.886	1.666	42.28%	5.407	2.258	58.23%

Fuente: (Propia,2021)

Tabla 48. Comparación entre método Manual VS. Etabs.

	EXTREMO			COLAPSO	
HOJA	ETABS	DIF	HOJA	ETABS	DIF
0.2380	0.2489	-4.40%	0.3118	0.2817	9.66%
0.1340	0.1714	-21.78%	0.2095	0.2244	-6.64%
1.5058	1.825	-17.49%	1.6445	1.894	-13.17%
638.5579	718.84	-11.17%	836.7943	835.58	0.15%
0.1793	0.2151	-16.62%	0.2803	0.2797	0.21%
9.5970	10.87	-11.71%	15.4943	11.91	23.13%
8.0984	2.300	71.60%	12.6573	2.440	80.72%

Fuente: (Propia,2021)

De la tabla comparativa puede concluirse que los valores obtenidos del cálculo manual vs. Etabs presentan diferencias porcentuales pequeñas, validando de esta forma el método CSM indicado en el ATC-40.

4.9.3.2 Puntos de Desempeño en Y

4.9.3.2.1 Sismo Frecuente

Figura 101. Desplazamiento 0.034647, cortante 156297.53kg

4.9.3.2.2 Sismo Servicio

Figura 102. Desplazamiento 0.083822m, cortante 326010.26 kg

Figura 103. Desplazamiento 0.204957m, cortante 624614.79 kg

4.9.3.2.4 Sismo Extremo

Figura 104. Desplazamiento 0.294673m, cortante 772763.25 kg

Fuente: (Propia,2021)

Figura 105. Desplazamiento 0.340606m, cortante 844006.15 kg

4.9.3.2.6 Desempeño Estructural de la Edificación

Figura 106. Puntos de desempeño sectorizados en curva.

Observamos que en FEMA-440 los puntos de desempeño cumplen de manera satisfactoria, e incluso se encuentran en un estado menor al límite establecido indicando que en el sentido Y la estructura quedara en el rango de seguridad de vidas.

4.9.3.2.7 Verificación Manual CSM en Y

Para convertir el espectro elástico de aceleraciones normalizado (Aceleración en función del período), usamos la siguiente expresión (Applied Technology Council, 2005):

$$S_{de} = \frac{T^2}{4\pi^2} S_{ae} \tag{62}$$

Y para la curva de capacidad:

$$S_{ai} = \frac{V_i / W}{\alpha_1} \tag{63}$$

$$S_{di} = \frac{\Delta_i}{PF_1 \cdot \phi_{N,1}} \tag{64}$$

PUNTO	Desplaz. (m)	V (Kg)	Sd (m)	Sa (g)	T (seg)
0	0	0.00	0	0	
1	0.027347	128.57	0.03521682	0.04814869	1.7159
2	0.067347	280.49	0.08672788	0.10504143	1.8231
3	0.107347	391.00	0.13823893	0.14642546	1.9495
4	0.147347	489.95	0.18974999	0.18348042	2.0404
5	0.187347	585.26	0.24126104	0.21917144	2.1051
6	0.227347	674.65	0.2927721	0.25264895	2.1598
7	0.267347	734.56	0.34428316	0.27508184	2.2446
8	0.307347	790.48	0.39579421	0.29602607	2.3200
9	0.341095	844.79	0.43925409	0.31636407	2.3642

Con lo que obtenemos los siguientes puntos:

Conversión de la curva de capacidad a formato AD.

Fuente: (Propia,2021)

Para cada punto de desempeño es necesario desarrollar una representación bilineal tal y como se hizo con el método de los Coeficientes de desplazamientos (CSM) para encontrar las coordenadas del límite elástico con las cuales poder calcular el amortiguamiento equivalente (β_{eq}) y con este, encontrar los factores de reducción espectral SR_A y SR_V .

$$SR_A = \frac{3.21 - Ln(\beta_{eq})}{2.12} \tag{65}$$

$$SR_V = \frac{2.31 - Ln(\beta_{eq})}{1.65} \tag{66}$$

El objetivo es obtener un espectro de demanda reducido como consecuencia del aumento en el período fundamental del edificio (T_e) y del amortiguamiento efectivo (β_{eq}) . El espectro de respuesta está compuesto por 3 zonas, a saber: Entre el origen y $T = T_a$ es la zona de desplazamientos constantes; para $T_a \leq T \leq T_b$ la zona de aceleración constante y para $T > T_b$ la zona de velocidad constante.

El factor SR_A (19) se aplica para la zona de aceleración constante y SR_V (20) para la zona de velocidad constante.

Con el espectro reducido y escalado para el punto de desempeño, se superponen las curvas y en su intersección se encuentra el punto de desempeño. La intersección se encontró por medio de un programa desarrollado por el autor que consiste en un procedimiento iterativo.

La siguiente grafica muestra la superposición de ambas curvas, siendo la roja la correspondiente al espectro de demanda reducido, la curva en negro al espectro elástico escalado para el nivel de desempeño buscado, la curva verde es el espectro de capacidad y la café es la representación bilineal para el punto de desempeño buscado; El punto dentro de la curva de representación bilineal, representa el límite elástico para la estructura con el nivel de desempeño buscado.

Figura 107. Punto de desempeño en espectro de diseño ADRS.

Fuente: (Propia,2021)

Se comparan los valores encontrados del cálculo manual con los obtenidos con Etabs:

Tabla 49. Pur	ntos de desei	mpeño encon	tramos método	CSM.
---------------	---------------	-------------	---------------	------

ESCENARIO	FRECUENTE	SERVICIO	DISEÑO	EXTREMO	COLAPSO
Aceleración espectral en punto de desempeño, Sai (g) =	0.0395	0.0704	0.1218	0.1627	0.3164
Desplazamiento espectral en punto de desempeño, Sdi (m) =	0.0289	0.0554	0.1076	0.1609	0.4393
Período efectivo, Teff (seg)=	1.716	1.779	1.886	1.995	2.364
Cortante en la base para punto de desempeño, Vp (T) =	105.55	188.11	325.37	434.45	844.83
Desplazamiento del techo para punto de desempeño, Δp (m) =	0.0224	0.0430	0.0836	0.1249	0.3411
Amortiguamiento efectivo, βeff (%) =	5.00	8.05	10.91	13.18	18.22
Ductilidad, μ =	0.637	1.222	2.374	3.547	9.686

Fuente: (Propia,2021)

Figura 108. Puntos de desempeño sectorizados en curva.

Podemos observar que en todos los sismos se cumple con el objetivo de desempeño según la metodología FEMA-440. Al ubicar los puntos de desempeño en la curva de capacidad se observa que todos cumplen con los requerimientos establecidos por ATC-40 y FEMA-440. Puede notarse en la gráfica que se cumple con todos los puntos de desempeño y esto se refleja en la matriz de objetivos que cumple la diagonal de forma perfecta, es decir, que luego del sismo frecuente la estructura quedara totalmente funcional, para el sismo de servicio se encontrara en el rango operacional (IO), para el evento de diseño la estructura quedara en seguridad de vida (LS) y para el evento extremo la estructura quedara cerca del colapso (CP) pero permitiendo salvaguardar la vida de las personas.

Procedemos a comparar los valores obtenidos del cálculo manual con Etabs:

Tabla 50. Tabla comparativa con valores manuales vs Etabs.

							·		
ESCENARIO	FRECUENTE		SERVICIO			DISEÑO			
ESCENARIO	HOJA	ETABS	DIF	HOJA	ETABS	DIF	HOJA	ETABS	DIF
Aceleración espectral en punto de desempeño, Sai (g) =	0.0395	0.0553	-28.58%	0.0704	0.1151	-38.78%	0.1218	0.2211	-44.89%
Desplazamiento espectral en punto de desempeño, Sdi (m) =	0.0289	0.0230	20.41%	0.0554	0.0559	-0.89%	0.1076	0.1377	-21.81%
Período efectivo, Teff (seg)=	1.716	1.338	22.02%	1.779	1.689	5.08%	1.886	2.159	-12.65%
Cortante en la base para punto de desempeño, Vp (T) =	105.55	156.30	-32.47%	188.11	326.01	-42.30%	325.37	624.61	-47.91%
Desplazamiento del techo para punto de desempeño, Δp (m) =	0.0224	0.0346	-35.21%	0.0430	0.0838	-48.67%	0.0836	0.2050	-59.22%
Amortiguamiento efectivo, βeff (%) =	5.00	6.30	-20.63%	8.05	12.60	-36.12%	10.91	0.20	98.21%
Ductilidad u =	0.637	1 270	-49 79%	1 222	2 539	-51 89%	2 374	3 935	-39 68%

EXTREMO				COLAPSO	
HOJA	ETABS	DIF	HOJA	ETABS	DIF
0.1627	0.2672	-39.10%	0.3164	0.2884	8.86%
0.1609	0.1992	-19.25%	0.4393	0.2320	47.19%
1.9950	2.214	-9.89%	2.3642	2.134	9.74%
434.4527	772.76	-43.78%	844.8329	844.01	0.10%
0.1249	0.2947	-57.61%	0.3411	0.3406	0.15%
13.1806	0.19	98.53%	18.2158	0.20	98.90%
3.5469	3.875	-8.46%	9.6863	4.120	57.47%

Tabla 51. Tabla comparativa con valores manuales vs Etabs.

De la tabla comparativa puede concluirse que los valores obtenidos del cálculo manual vs. Etabs presentan diferencias porcentuales pequeñas, validando de esta forma el método CSM indicado en el ATC-40.

4.9.3.2.8 Comparativa DCM vs. CSM

Sentido X

Tabla 52. Tabla comparativa para métodos DCM VS. CSM en sentido X.

FEEENADIO		FRECUENTE		SERVICIO		
ESCENARIO	CSM	DCM	DIF	CSM	DCM	DIF
Período efectivo, Teff (seg)=	1.386	1.386	0.04%	1.400	1.386	1.01%
Cortante en la base para punto de desempeño, Vp (T) =	130.22	122.17	6.18%	263.21	256.57	2.52%
Desplazamiento del techo para punto de desempeño, Δp (m) =	0.0310	0.0291	6.25%	0.0639	0.0622	2.65%
Amortiguamiento efectivo, βeff (%) =	5.03	5.91	-14.80%	5.78	6.24	-7.35%
Ductilidad, μ =	1.400	1.454	-3.67%	2.886	3.111	-7.23%

Fuente: (Propia,2021)

Tabla 53. Tabla comparativa para métodos DCM VS. CSM en sentido X.

	DISEÑO		EXTREMO			COLAPSO			
CSM	DCM	DIF	CSM	DCM	DIF	CSM	DCM	DIF	
1.458	1.389	4.72%	1.506	1.402	6.88%	1.644	1.413	14.07%	
454.67	513.13	-11.39%	638.56	769.70	-17.04%	836.79	836.91	-0.01%	
0.1197	0.1382	-13.38%	0.1793	0.2419	-25.85%	0.2803	0.2804	-0.02%	
8.55	8.96	-4.51%	8.55	9.70	-11.85%	15.49	9.81	36.70%	
5.407	6.912	-21.77%	5.407	12.093	-55.29%	12.657	14.018	-9.71%	

Fuente: (Propia,2021)

Sentido Y

Tabla 54. Tabla comparativa para métodos DCM VS. CSM en sentido Y.

ECCENADIO		FRECUENTE		SERVICIO		
ESCENARIO	CSM	DCM	DIF	CSM	DCM	DIF
Período efectivo, Teff (seg)=	1.716	1.716	0.00%	1.779	1.716	3.56%
Cortante en la base para punto de desempeño, Vp (T) =	105.55	119.45	-11.64%	188.11	250.84	-25.01%
Desplazamiento del techo para punto de desempeño, Δp (m) =	0.0224	0.0254	-11.65%	0.0430	0.0595	-27.74%
Amortiguamiento efectivo, βeff (%) =	5.00	5.00	0.00%	8.05	10.02	-19.69%
Ductilidad, μ =	0.637	1.000	-36.25%	1.222	2.181	-43.98%

	DISEÑO			EXTREMO			COLAPSO	
CSM	DCM	DIF	CSM	DCM	DIF	CSM	DCM	DIF
1.886	1.744	7.51%	1.995	1.805	9.52%	2.364	1.815	23.24%
325.37	501.67	-35.14%	434.45	752.51	-42.27%	844.83	844.79	0.01%
0.0836	0.1523	-45.10%	0.1249	0.2802	-55.42%	0.3411	0.3411	0.01%
10.91	14.31	-23.79%	10.91	16.23	-32.80%	18.22	17.83	2.09%
2.374	5.578	-57.44%	2.374	10.263	-76.87%	9.686	12.494	-22.47%

Tabla 55. Tabla comparativa para métodos DCM VS. CSM en sentido Y.

Fuente: (Propia,2021)

4.9.4 Observaciones Segunda Iteración

De los resultados obtenidos de la curva de desempeño tanto en el sentido X como en el sentido Y, se concluye que el edificio si cumple con los requerimientos mínimos de desempeño establecidos por el ATC-40, FEMA 440.

4.9.5 Comentarios Generales

El primer modelo simulado en base a los marcos rígidos especiales del CHOC-08, no cumplió con los objetivos de desempeño establecidos por el ATC-40 y FEMA-440, aun cuando el edificio si cumplía con todos los parámetros establecidos por la norma. Esto no quiere decir que el edificio este subdiseñado o que el detallado que el CHOC-08 prescribe este errado, pues para el momento en que se estableció la norma, el pushover estaba en proceso de investigación y en ese momento no era un criterio aceptado por los códigos de diseño. Además, la metodología pushover se utiliza como un parámetro para calificar el desempeño de la estructura.

Por lo tanto, podemos decir que, para el modelo analizado en este proyecto de tesis, el detallado y prescripciones del CHOC-08 permiten que el edificio se diseñe para alcanzar el nivel de seguridad de vidas, sin embargo, al calificarlo en base a los estándares ATC-40 y FEMA-440 este objetivo no se cumple. Esta conclusión no se puede aplicar con certeza a todas las edificaciones con marcos rígidos especiales en zonas de riesgo sísmico moderado, ya que aquí entran en juego diversos factores como la geometría de la edificación, calidad de los materiales, procesos constructivos, definición de rotulas plásticas entre otros. Por ende, se puede decir que el pushover es conservador frente al CHOC-08, ya que lo que busca es alargar la vida útil de la edificación ante eventos sísmicos extremos y a su vez garantizar la seguridad de vidas.

En resumen, aunque para este caso el edificio no haya cumplido con los límites establecidos por el ATC-40 y FEMA-440, la estructura si está diseñada para soportar el sismo de diseño y llegar al nivel de seguridad de vidas, ya que se cumplió con todas las revisiones y detallados establecidos en la norma CHOC-08 y que en base a experiencia permite diseñar edificios con un nivel de desempeño aceptable.

ANALISIS EXPLORATORIO DE RESULTADOS

4.10 Análisis de Resultados Obtenidos

Con los resultados obtenidos de las simulaciones, se procede a realizar un análisis exploratorio comparativo con el fin de confirmar la hipótesis nula o en su defecto rechazarla y aceptar la hipótesis alterna.

La muestra para análisis consta de la variable de ductilidad en el punto de sismo de colapso. En el caso de sismo frecuente, de servicio, diseño y extremo, lo que se va a evaluar es la demanda de ductilidad; por lo que compararemos porcentualmente la mejora que hubo del primer modelo al modelo ya refinado y ver si hay una relación directamente proporcional con los desplazamientos en el dominio inelástico de diafragma superior del edificio.

4.10.1 Variable Analizada: Ductilidad

4.10.1.1 Sentido X: Demanda de Ductilidad Antes del Colapso

Tabla 56. Analisis Exploratorio para sismo frecuente, sentido en X.

Muestra para Análisis Exploratorio						
ΔΤΕCHO SISMO FRECUENTE						
Demanda de Dutilidad						
μ Modelo 1 μ Modelo 2 % Porcentu						
1	1.4535	31.20%				

Fuente: (Propia,2021)

Tabla 57. Análisis Exploratorio para sismo Servicio, sentido en X.

Muestra para Análisis Exploratorio					
ΔΤΕCHO SISMO SERVICIO					
Demanda de Dutilidad					
μ Modelo 1	μ Modelo 1 μ Modelo 2 % Porcentua				
2.1632	6.2394	65.33%			

Muestre para Apólicis Estadístico					
Iviuestra	para Analisis Estadisi	100			
ΔΤΕCHO SISMO DISEÑO					
Demanda de Dutilidad					
μ Modelo 1	μ Modelo 2	% Porcentual			
4.8592	6.9115	29.69%			

Tabla 58. Análisis Exploratorio para sismo Diseño, sentido en X.

Fuente: (Propia,2021)

Tabla 59. Análisis Exploratorio para sismo Extremo, sentido en X.

Muestra para Análisis Exploratorio						
ΔΤΕCHO SISMO EXTREMO						
Demanda de Dutilidad						
μ Modelo 1 μ Modelo 2 % Porcentu						
6.839	12.093	43.45%				

Fuente: (Propia,2021)

4.10.1.2 Sentido X: Ductilidad

Tabla 60. Análisis Exploratorio para sismo Colapso, sentido en X.

Muestra para Análisis Exploratorio								
ΔΤΕCHO SISMO COLAPSO								
Variable: Ductilidad								
μ Modelo 1 μ Modelo 2 % Porcentual								
8.6	14.018	38.65%						
Comentario: Se observa	a que en el modelo 2	la ductilidad						
aumento 1.63 veces la o	ductilidad del model	o original, lo						
que indica que si hay un	que indica que si hay una incidencia del desplazamiento en							
el dominio inelástico en la variable de ductilidad y por ende								
se acepta la hipótesis a	lterna.							

Fuente: (Propia,2021)

4.10.1.3 Sentido Y: Demanda de Ductilidad Antes del Colapso

Tabla 61. Análisis Exploratorio para sismo Frecuente, sentido en Y.

Muestra para Análisis Exploratorio			
ΔΤΕCHO SISMO FRECUENTE			
Demanda de Dutilidad			
μ Modelo 1	μ Modelo 2	% Porcentual	
1	1	0.00%	

Muestra para Análisis Exploratorio			
ΔTECHO SISMO SERVICIO			
Demanda de Dutilidad			
μ Modelo 1	μ Modelo 2	% Porcentual	
2.2102	2.1809	1.33%	

Tabla 62. Análisis Exploratorio para sismo Servicio, sentido en Y.

Fuente: (Propia,2021)

Tabla 63. Análisis Exploratorio para sismo Diseño, sentido en Y.

Muestra para Análisis Exploratorio			
ΔΤΕCHO SISMO DISEÑO			
Demanda de Dutilidad			
μ Modelo 1	μ Modelo 2	% Porcentual	
5.7645	5.5777	3.24%	

Fuente: (Propia,2021)

Tabla 64. Análisis Exploratorio para sismo Extremo, sentido en Y.

Muestra para Análisis Exploratorio			
ΔΤΕCHO SISMO EXTREMO			
Demanda de Dutilidad			
μ Modelo 1	μ Modelo 2	% Porcentual	
6.3674	10.26	37.94%	

Fuente: (Propia,2021)

4.10.1.4 Sentido Y: Ductilidad

Tabla 65. Análisis Exploratorio para sismo Colapso, sentido en Y.

Muestra para Análisis Exploratorio				
ΔΤΕCHO SISMO COLAPSO				
Variable:	Ductilidad			
μ Modelo 1	μ Modelo 2	% Porcentual		
9.22	12.49	26.18%		
Comentario: Se observa que en el modelo 2 la ductilidad				
aumento 1.35 veces la ductilidad del modelo original, lo				
que indica que si hay una incidencia del desplazamiento en				
el dominio inelástico en la variable de ductilidad y por ende				
se acepta la hipótesis alterna.				

CAPÍTULO V. CONCLUSIONES Y RECOMENDACIONES

5.1 Conclusiones

- La ventaja de implementar un análisis pushover al proceso de diseño estructural es darle al diseñador un parámetro para medir el desempeño estructural de la edificación y de esta forma mejorar la estructura detectando los puntos críticos a través de la formación de las rotulas plásticas.
- 2. El primer modelo simulado en base a los marcos rígidos especiales del CHOC-08, no cumplió con los objetivos de desempeño establecidos por el ATC-40 y FEMA-440, aun cuando el edificio si cumplía con todos los parámetros establecidos por la norma. Esto no quiere decir que el edificio este subdiseñado o que el detallado que el CHOC-08 prescribe este errado, pues para el momento en que se estableció la norma, el pushover estaba en proceso de investigación y en ese momento no era un criterio aceptado por los códigos de diseño. De ahí la importancia de implementarlo a los diseños estructurales actuales para tener una mejor idea del comportamiento de la estructura ante un evento sísmico e identificar en que puntos la estructura necesitara mayor reforzamiento para poder cumplir con los objetivos de desempeño.
- 3. El análisis exploratorio de datos demostró que, si hay una relación directamente proporcional entre el desplazamiento en el dominio inelástico y la variable de ductilidad, ya que esta aumentara y se desarrollara acorde al desplazamiento lateral de la edificación. Por ende, la hipótesis aceptada es la alterna.
- 4. Se demostró que con pequeñas mejoras al modelo estructural como: aumento de sección de columnas hasta el primer entrepiso y aumento de las secciones de las vigas de cimentación, el desempeño del edificio mejoro considerablemente, reflejándose esto en la variable de ductilidad y a su vez haciendo que el modelo cumpla con todos los objetivos de desempeño establecidos en el ATC-40 y FEMA-440, asegurando así el salvaguardar vidas y evitar que el edificio llegue al colapso.
- 5. Para el desarrollo de los modelos de análisis, se utilizó la configuración de rotulas plásticas establecidas por el ASCE 41-13, las cuales son mucho más conservadoras que utilizar los datos generados por el diagrama momento curvatura de cada elemento estructural del edificio.
- 6. El modelo analizado no tomo en cuenta los efectos de la interacción suelo-estructura.
- Los resultados obtenidos son válidos únicamente para los modelos analizados en el presente documento.

5.2 Recomendaciones

- Se recomienda implementar la práctica del análisis estático no lineal (pushover) como una evaluación complementaria en los diseños estructurales, esto con el fin de determinar con antelación el comportamiento de la edificación ante un evento sísmico extremo, para así refinar el modelo y cumplir con el objetivo de salvaguardar vidas.
- 2. El análisis pushover no toma en cuenta el efecto de amplificación resonante, tiempo de duración del sismo ni la degradación del edificio. Es por ello que si se quiere profundizar en el tema se debe realizar un análisis dinámico no lineal cronológico que debe de implementarse usando 11 registros diferentes con diferentes frecuencias dominantes.
- 3. Para tener una idea aún más precisa del desempeño de la edificación, se recomienda tomar en cuenta para el análisis pushover, los efectos de la interacción suelo-estructura.

CAPÍTULO VI. APLICABILIDAD

6.1 Nombre de la Propuesta

APLICACIÓN DEL ANÁLISIS ESTÁTICO NO LINEAL (PUSHOVER) A UNA EDIFICACIÓN DE SIETE NIVELES CON SISTEMA DE MARCOS RÍGIDOS ESPECIALES.

6.2. Justificación de la propuesta

El análisis pushover se está proponiendo como una revisión complementaria al proceso de diseño estructural de una edificación establecidos en el CHOC-08, con el fin de que el diseñador tenga una idea más clara del comportamiento del edificio posterior al evento sísmico y de esta forma detectar los puntos donde se requerirá mejorar la estructura a través de la formación de rotulas plásticas.

Las mejoras del edificio dependerán de cada caso de estudio, en este trabajo de investigación se basaron en configuración geométrica, aumento de cuantía de acero en vigas y aumento de sección de columnas hasta el primer entrepiso.

Con el refinamiento del edificio se buscará cumplir con los requerimientos mínimos de desempeño establecidos por el ATC-40, FEMA-440 y ASCE 41-13.

6.3 Alcance de la propuesta

El primordial objetivo del proyecto es:

"Diseñar un edificio de ocho niveles utilizando el análisis estático y análisis modal espectral del CHOC-08 y aplicar la metodología del análisis no lineal (pushover) para evaluar el desempeño de la estructura."

6.3.1. Objetivos Específicos

- 1) Definir la importancia de aplicar un análisis pushover como complemento al proceso de diseño estructural, para así poder tener una aproximación de como sería el comportamiento de la estructura luego de un evento sísmico.
- Demostrar que al realizar un pushover se pueden detectar los elementos que generaran rotulas plásticas y de esta forma reforzarlos para lograr un mejor desempeño de la estructura.
- 3) Demostrar que con refinamientos en puntos específicos del modelo estructural (detectados a través de rotulas plásticas), el nivel de desempeño del edificio mejora cumpliendo aquí el propósito de generar diseños seguros y a la vez económicos en el ámbito de la construcción.

6.4 Descripción y desarrollo a detalle de la propuesta.

6.4.1 Desarrollo de la Propuesta

- 1) Revisión preliminar de planos arquitectónicos de proyecto a desarrollar y definir con que material se construirá la estructura.
- 2) Definir esquema de estructuración, es decir, establecer ubicación de vigas y columnas y tipo de losa de entrepiso que se va a utilizar.
- 3) En base al código, establecer tipología estructural más adecuada, basándose en la ubicación del edificio, material y tipo de suelo.
- 4) Realizar el predimensionamiento de elementos estructurales.
- 5) Desarrollar un modelo 3D del edificio en un software estructural, en base a la estructuración y elementos predimensionados y aplicar las cargas gravitacionales y ecológicas indicadas en el código de diseño.
- 6) Realizar una corrida preliminar con el fin de determinar que el modelo sintético no tenga errores que puedan afectar los resultados finales del análisis estructural.
- 7) Con el modelo sin errores, se procede a realizar el análisis estático y dinámico de la estructura, se revisan las irregularidades verticales y laterales del edificio acorde a los parámetros del código utilizado. De ser necesario calcular el efecto $P\Delta$.
- 8) Una vez concluidas las revisiones y etapa de análisis, se procede a diseñar y detallar los elementos estructurales.
- 9) Concluida la etapa de diseño pasamos al análisis pushover, para ello se debe contar con un software estructural que cuente con las prestaciones para llevar a cabo un análisis por desempeño. En este modelo de investigación se utilizó el software Etabs 2019.
- 10) Definir los casos de carga. Si se está usando ETABS, convertir la carga permanente a un caso de carga no lineal estático de manera que el programa pueda usar este como punto de partida para el análisis pushover y también se deberán crear los casos de carga pushover para cada dirección.
- 11) Decidir el valor del desplazamiento objetivo que deseamos observar en el comportamiento de la estructura.
- 12) Definir las propiedades de las articulaciones plásticas para las vigas y columnas y asignarlas a cada uno de los miembros correspondientes.
- 13) Correr nuevamente el modelo únicamente con los casos de carga muerta no lineal y el pushover en el sentido correspondiente.
- 14) De la corrida, obtener la curva pushover (cortante vs desplazamiento) y ubicar en esta los puntos de desempeño correspondientes a sismo frecuente, servicio, diseño, extremo y colapso.
- 15) Sectorizar los puntos de desempeño acorde a lo indicado en Visión 2000 y determinar si se cumple con el límite establecido o si se deberá refinar el modelo de análisis en los puntos donde se generaron las rotulas plásticas.

16) Correr nuevamente el modelo con el refinamiento para poder cumplir con todos los objetivos de desempeño y así concluir si este tendrá el desempeño adecuado luego de un evento sísmico.

6.4.2 Desarrollo de todos los elementos necesarios

6.4.2.1 Herramientas

- 1) Etabs 2016
- 2) Etabs 2019
- 3) Autodesk AutoCAD
- 4) Microsoft Office

6.4.2.2 Instrumentos: Ordenadores

- Marca: Asus
 Procesador: AMD Ryzen 7, 3750H with Radeon Vega Mobile Gfx ,2.30 GHz
 Memoria RAM: 16.00 GB
 Tipo de Sistema: Sistema operativo de 64 bits, procesador basado en x64
 Número de Núcleos: 4
- Marca: Dell Inspiron 15 7000 Gaming Procesador: Intel Core i7 7700HQ CPU, 2.80GHz Memoria RAM: 16.00 GB Tipo de Sistema: Sistema operativo de 64 bits, procesador basado en x64 Número de Núcleos: 4

6.4.3 Medidas de control

• Ductilidad

6.5 Concordancia de los segmentos de la tesis con la propuesta

Tabla 66. Resumen Especifico de Capitulo I.

CAPITULO I				
Titulo de la Investigación	Objetivo General	Objetivos Específicos		
Aplicación del Análisis Estático No Lineal Pushover a una Edificación de Siete Niveles con Sistema de Marcos Rígidos Especiales	"Diseñar un edificio de ocho niveles utilizando el análisis estático y análisis modal espectral del CHOC-08 y aplicar la metodología del análisis no lineal (pushover) para evaluar el desempeño de la estructura."	 Definir las ventajas que proporcionaría el implementar el análisis estático no lineal (pushover) a la seguridad estructural de una edificación. Confirmar que el detallado de los marcos rígidos especiales del CHOC-08, cumpla con los requerimientos mínimos de desempeño establecidos en los estándares ATC-40, FEMA-440 Y ASCE 41-13. 		

Fuente: (Propia,2021)

Tabla 67. Resumen Especifico de Capitulo II.

CAPITULO II	
Teorías Metodologías de Sustento	
Código Hondureño de la Construcción CHOC-08	
Método de Capacidad Espectral del ATC-40	
Método de Coeficientes de Desplazamiento del FEMA-440	

Fuente: (Propia,2021)

Tabla 68. Resumen Especifico de Capitulo III.

CAPITULO III		
Variables	Hipótesis	
Variable de Control: Desplazamiento en el dominio inelástico en el diafragma superior del edificio.	Hipótesis Nula: Basados en valores numéricos empíricos, no existe una relación entre el valor del desplazamiento en el diafragma superior del edificio en el dominio inelástico y la variable correspondientes a los valores numéricos de ductilidad.	
Variables Observables: Ductilidad	Hipótesis Alterna: Basados en valores numéricos empíricos, existe una relación directamente proporcional entre el valor del desplazamiento en el diafragma superior del edificio en el dominio inelástico y la variable correspondientes a los valores numéricos de ductilidad.	

Fuente: (Propia,2021)

Tabla 69. Resumen Especifico de Capitulo V.

Fuente: (Propia,2021)

Tabla 70. Resumen Especifico de Capitulo IV.

CAPITULO VI		
Nombre de la Propuesta	Objetivos de la Propuesta	
Plan de Implementación de Análisis Pushover al proceso de diseño estructural	 Definir la importancia de aplicar un análisis pushover como complemento al proceso de diseño estructural, para así poder tener una aproximación de como seria el comportamiento de la estructura luego de un evento sísmico. Demostrar que al realizar un pushover se pueden detectar los elementos que generaran rotulas plásticas y de esta forma reforzarlos para lograr un mejor desempeño de la estructura. Demostrar que con refinamientos en puntos específicos del modelo estructural (detectados a través de rotulas plásticas), el nivel de desempeño del edificio mejora cumpliendo aquí el propósito de generar diseños seguros y a la vez económicos en el ámbito de la construcción. 	

Fuente: (Propia,2021)

REFERENCIA BIBLIOGRAFÍA

- Aguiar, R. (2021). UN NUEVO MODELO DE PLASTICIDAD PARA EL ANÁLISIS ESTÁTICO NO LINEAL. GV, P. 65.
- Esteba Apaza, A. E. (2017). Análisis Estático Y Dinámico No Lineal En El Desempeño De Un Edificio De Concreto Armado Diseñado Bajo La Norma E-030 En Puno. Universidad Nacional Del Altiplano. Http://Repositorio.Unap.Edu.Pe/Handle/UNAP/6079
- Llano Iza, A. W. (2015). Diseño Estructural De Una Edificación De Seis Pisos, Mediante Un Análisis Lineal Controlado Por Derivas Inelásticas Y Una Comprobación Con Un Análisis Estático No Lineal, Aplicando La Técnica Del Pushover. Http://Bibdigital.Epn.Edu.Ec/Handle/15000/10782
- Moreno González, R. (2006). Evaluación Del Riesgo Sísmico En Edificios Mediante Análisis Estático No Lineal: Aplicación A Diversos Escenarios Sísmicos De Barcelona. En TDX (Tesis Doctorals En Xarxa). Universitat Politècnica De Catalunya. Https://Upcommons.Upc.Edu/Handle/2117/93559
- ATC-40. (1996). Seismic Evaluation And Retrofit Of Concrete Buildings. Vol I Y II. California Seismic Safety Commision. Redwood City, California.
- FEMA 356. (2000). PRESTANDARD AND COMMENTARY FORT HE SEISMIC REHABILITATION OF BUILDINGS. Washington, DC. FEMA 356.
- FEMA 440. (2005). IMPROVEMENT OF NONLINEAR STATIC SEISMIC ANALYSIS PROCEDURES. Washington, DC. FEMA 440.
- Guillermo Osvaldo Villanueva Mohr. (2009). Tesis: "DISEÑO SÍSMICO POR DESEMPEÑO APLICADO A UN EDIFICIO DE HORMIGÓN ARMADO". Valdivia, Chile.

CHOC-08 Código Hondureño De La Construcción, Normas Técnicas.

MARIO PAZ. (1992). DINAMICA ESTRUCTURA TEORIA Y CALCULO, TERCERA EDICION. Barcelona, España

Vlacev Toledo Espinoza. (2011). Pushover-Análisis No Lineal Estático En Edificios De Concreto Armado, Libro III De La Colección: Ingeniería Sísmica Basada En Desempeño- Perú.

- Flores Barreto Teodorico Manuel (2003). Tesis: Estudio Del Control De Rotulas Plásticas En Pórticos De Concreto Armado. Lima, Peru.
- Applied Technology Council. (2005). Improvement of Non-Linear Static Seismic Análysis Procedures (FEMA 440). Washington, D.C., USA.: FEMA.
- CICH. (2008). Código Hondureño de la Construcción. Tegucigalpa.

Computers and Structures. (2016). ETABS v16.2.1. Berkeley, California, USA.

Structural Engineering Institute. (2014). Seismic Evaluation and Retrofit of Existing Buidings, ASCE 41-13. Virginia, USA: American Society of Civil Engineers.

Torre, J. (2021). DESEMPEÑO ESTRUCTURAL. Tegucigalpa, Honduras: Rutina de ordenador.

Torre, J. (2008). Fuerzas del Análisis Dinámico. Tegucigalpa: Rutina de ordenador.

Uniform Building Code. (1994). Structural Engineering Design Provisions, California, USA.

GLOSARIO

Análisis pushover: Es un tipo de análisis estático no lineal que permite determinar la capacidad resistente de la estructura y compararla con la demanda posible ante un evento natural. La demanda está relacionada con la amenaza sísmica y del sitio de ubicación de la estructura.

Ductilidad: Es la propiedad que define la posibilidad de la estructura o algunos de sus componentes estructurales de experimentar deformaciones más allá del límite elástico sin reducir de manera significativa su resistencia o rigidez.

Capacidad: La capacidad es una representación de la habilidad de una estructura para resistir la demanda sísmica.

Desempeño: A través del desempeño se podrá verifica que los componentes estructurales y no estructurales no estén dañados más allá de los límites aceptables de los objetivos de desempeño.

<u>Rotula Plástica</u>: Estado plástico que alcanzan todas las fibras de un elemento estructural al producirse una articulación en la sección transversal del mismo.

Estado Límite de Diseño: Su función es asegurar con un margen de seguridad razonable que la respuesta máxima favorable de la estructura en cada una de esas situaciones es superior a la exigencia real sobre la estructura.

Cortante Basal: Permite determinar la fuerza lateral total como consecuencia de las fuerzas inercia que se induce a un sistema de N grados de libertad, distribuyéndolo posteriormente a lo largo de las diferentes alturas de la estructura.

Desplazamiento: La demanda de desplazamiento es una estimación de la respuesta máxima esperada del edificio durante el movimiento del suelo.

Confinamiento: Disposición del acero de refuerzo calculado y cuidadosamente detallado según la teoría del concreto reforzado, para darle al miembro un comportamiento apropiadamente dúctil y tenaz durante repetidos sismos de diseño

Estribos: Acero de refuerzo transversal dispuesto en las vigas.

ATC-40: Applied Technology Council

FEMA-440: Federal Emergency Management Agency

ANEXOS

Formación De Rotulas Plásticas Modelo 1

Figura 109. Formación de rotulas plásticas para pushover X.

Fuente: (Propia, 2021)

Figura 110. Formación de rotulas plásticas en Y.

Fuente: (Propia, 2021)

Formación De Rotulas Plásticas Modelo 2

Figura 111. Formación de rotulas plásticas en X.

Fuente: (Propia, 2021)

Figura 112. Formación de rotulas plásticas en Y.

Fuente: (Propia, 2021)

CARTA DE COMPROMISO PARA ASESORÍA TEMÁTICA

Señores Facultad de Postgrado UNITEC.

Por este medio yo	Joaquín Edgardo Torre Moncada
Identidad No.	0501-1958-03722
Licenciado en	Ingeniería Civil
Maestría en	Ingeniería Estructural
Doctorado en	Ingeniería Estructural
Hago constar que a	sumo la responsabilidad de asesorar técnicamente el trabajo de Tesis de
Maestría denomina	do:
"Aplicación de Ana	álisis Estático No Lineal (Pushover) a una Edificación de Siete Niveles
Con Sistema de Ma	arcos Rígidos Especiales"

A ser desarrollado por el (los) estudiante(s):

Brenda Melania Palada Barahona y Gabriela María Coello Morales

Para lo cual me comprometo a realizar de manera oportuna las revisiones y facilitar las observaciones que considere pertinentes a fin de que se logre finalizar el trabajo de tesis en el plazo establecido por la Facultad de Postgrado.

En la ciud	ad de	San Pedro Sula	
Departame	ento	Cortés	
Nombre		Joaquín Edgardo Torre Moncada	
Fecha	09/08/21	Firma:	